Your browser doesn't support javascript.
loading
Phytotoxic meroterpenoids with herbicidal activities from the phytopathogenic fungus Pseudopestalotiopsis theae.
Gan, Dong; Liu, Jia-Qi; Yang, Yu-Jun; Wang, Cheng-Yao; Zhu, Li; Li, Chen-Zhe; Cai, Le; Ding, Zhong-Tao.
Afiliación
  • Gan D; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
  • Liu JQ; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
  • Yang YJ; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
  • Wang CY; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
  • Zhu L; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
  • Li CZ; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
  • Cai L; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
  • Ding ZT; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, K
Phytochemistry ; 206: 113522, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36471552
The fungus Pseudopestalotiopsis theae isolated from the fresh leaves of Illigera celebica, has been reported to be a pathogenic fungus that can cause gray blight on tea leaves, a disease characterized by the appearance of necrotic lesions on tea leaves. The pathogenic substances in this fungus have not been clearly identified. Considering the possible involvement of specialized metabolites in symptom appearance, a chemical investigation of specialized metabolites on P. theae was conducted, resulting in the isolation of eight meroterpenoids, including six undescribed biscognienynes G-L and two known ones (biscognienynes B and D). The structures of these new compounds were characterized by extensive NMR spectroscopic and HR-ESI-MS data, and their absolute configurations were elucidated by ECD calculations. Except for biscogniyne L, all the isolated biscognienynes showed different degrees of phytotoxicity to tea in vivo, thereby revealing for the first time the substances in P. theae that cause tea gray blight. Inspired by the fact that phytotoxins produced by pathogenic fungus are an effective resource for designing natural and safe bioherbicides, when assayed the herbicidal activity through Petri dish bioassays, biscognienynes G-J showed phytotoxic effects against seed germination and seedling growth of Setaria viridis, strongly inhibiting seed germination percentage and radicle and germ lengths of seedlings. The results of this study demonstrated the great potential of biscognienynes G-J to be proposed and developed as ecofriendly herbicides.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ascomicetos / Herbicidas Idioma: En Revista: Phytochemistry Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ascomicetos / Herbicidas Idioma: En Revista: Phytochemistry Año: 2023 Tipo del documento: Article