Your browser doesn't support javascript.
loading
Neferine ameliorates nonalcoholic steatohepatitis through regulating AMPK pathway.
Wang, Ming-Yue; Zhang, Shao-Shi; An, Meng-Fei; Xia, Yue-Fei; Fan, Mao-Si; Sun, Ze-Rui; Zhang, Li-Juan; Zhao, Yun-Li; Sheng, Jun; Wang, Xuan-Jun.
Afiliación
  • Wang MY; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China.
  • Zhang SS; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China.
  • An MF; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China.
  • Xia YF; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China.
  • Fan MS; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China.
  • Sun ZR; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China.
  • Zhang LJ; School of Basic Medicine, Yunnan University of Chinese Medicine Chinese, Kunming 650500, P. R. China.
  • Zhao YL; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China. Electronic address: zhaoyunli@ynu.edu.cn.
  • Sheng J; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650224,
  • Wang XJ; Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China; Yunnan Research Institute of Plateau Characteristic Agricultural and Industry
Phytomedicine ; 114: 154798, 2023 Jun.
Article en En | MEDLINE | ID: mdl-37031639
ABSTRACT

BACKGROUND:

Nonalcoholic fatty liver disease (NAFLD), peculiarly nonalcoholic steatohepatitis (NASH), has become the main cause of liver transplantation and liver-related death. However, the US Food and Drug Administration has not approved a specific medication for treating NASH. Neferine (NEF), a natural bisbenzylisoquinoline alkaloid separated from the traditional Chinese medicine Nelumbinis plumula, has a variety of pharmacological properties, especially on metabolic diseases. Nevertheless, the anti-NASH effect and mechanisms of NEF remain unclear.

PURPOSE:

This study aimed to investigate the amelioration of NEF on NASH and the potential mechanisms. STUDY

DESIGN:

HepG2 cells, hepatic stellate cells (HSCs) and high-fat diet (HFD)+carbon tetrachloride (CCl4) induced C57BL/6 mice were used to observe the effect of NEF against NASH and investigate the engaged mechanism.

METHODS:

HSCs and HepG2 cells stimulated by oleic acid (OA) were treated with NEF. C57BL/6 mice were fed with HFD+CCl4 to induce NASH mouse model and treated with or without NEF (5 mg/kg or 10 mg/kg, once daily, i.p) for 4 weeks.

RESULTS:

NEF significantly attenuated the accumulation of lipid droplets, intracellular triglyceride (TG) levels and hepatocytes apoptosis in OA-exposed HepG2 cells. NEF not only enhanced the AMPK and ACC phosphorylation in OA-stimulated HepG2 cells, but also reduced inflammatory response and fibrosis in lipopolysaccharide (LPS)-stimulated HepG2 and in LX-2, respectively. In HFD+CCl4-induced NASH mice, pathological staining confirmed NEF treatment mitigated hepatic lipid deposition, inflammatory cell infiltration as well as hepatic fibrosis. Furthermore, the liver weight, serum and hepatic TG and total cholesterol (TC) and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were decreased compared with the model group. HFD+CCl4 also induced the upregulation of specific proteins and genes associated to inflammation (ILs, TNF-α, NLRP3, ASC, CCL2 and CXCL10) and hepatic fibrosis (collagens, α-SMA, TGF-ß and TIPM1), which were also suppressed by NEF treatment.

CONCLUSION:

Our results demonstrated that NEF played a protective role in hepatic steatosis via the regulation of AMPK pathways, which may serve as an attractive candidate for a potential novel strategy on prevention and treatment of NASH.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Medicinas Tradicionales: Medicinas_tradicionales_de_asia / Medicina_china Asunto principal: Bencilisoquinolinas / Enfermedad del Hígado Graso no Alcohólico Idioma: En Revista: Phytomedicine Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Medicinas Tradicionales: Medicinas_tradicionales_de_asia / Medicina_china Asunto principal: Bencilisoquinolinas / Enfermedad del Hígado Graso no Alcohólico Idioma: En Revista: Phytomedicine Año: 2023 Tipo del documento: Article