Transgenic animals demonstrate a role for the IL-1 receptor in regulating IL-1beta gene expression at steady-state and during the systemic stress induced by acute pancreatitis.
J Surg Res
; 63(1): 231-6, 1996 Jun.
Article
en En
| MEDLINE
| ID: mdl-8661203
Interleukin-1 (IL-1) gene expression is selectively induced in tissues involved in multisystem organ failure during acute pancreatitis, suggesting a role in the pathogenesis of distant organ dysfunction. This study was undertaken to investigate the mechanism of pancreatitis-induced end organ cytokine production and to better understand the processes by which IL-1 production is regulated. Seventy adult male transgenic mice in which the type 1 IL-1 receptor had been deleted by gene targeting in embryonic stem cells were utilized (homozygous -/- IL-1R knockout). Acute pancreatitis was induced by one of two methods: (A) IP injections of caerulein (50 microgram/kg/hr x 4) with animals sacrificed at 0, .5, 1, 2, 4, 6, and 8 hr; (B) 48-hr exposure to a choline deficient ethionine supplemented (CDE) diet with animals sacrificed at 0 and 72 hr. Knockout animals were compared to strain-specific control mice expressing the normal wild-type IL-1 receptor gene in which pancreatitis was similarly induced. The severity of pancreatitis was stratified by serum amylase, lipase, and blind histologic grading. IL-1 mRNA production was determined within the pancreas, lungs, liver, and spleen by quantitative differential RT-PCR. Deletion of the IL-1R1 attenuated the severity of pancreatitis, reaching statistical significance in the less severe edematous model. There was little or no constitutive expression of IL-1 mRNA within any of the tissues examined from wild-type animals; however, knockout animals showed elevated steady-state levels in each tissue. IL-1 mRNA became detectable in all tissues of wild-type animals shortly after either form of pancreatitis became apparent and increased significantly with worsening pancreatitis. Despite the attenuated pancreatitis, knockout animals produced significantly greater levels of IL-1 mRNA in each tissue, typically demonstrating a 30-50% increase over time matched IL-1 mRNA production in wild-type animals which was not pancreatitis model dependent. We conclude that genetic deletion of IL-1 receptors results in the overproduction of IL-1 mRNA in organs known to produce cytokines during pancreatitis even when the severity of pancreatitis is lessened. This suggests that a negative feedback loop exists between the IL-1 receptor and IL-1 gene expression.
Buscar en Google
Bases de datos:
MEDLINE
Asunto principal:
Pancreatitis
/
Citocinas
/
Interleucina-1
/
Receptores de Interleucina-1
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
J Surg Res
Año:
1996
Tipo del documento:
Article
País de afiliación:
Estados Unidos