Your browser doesn't support javascript.
loading
Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/ß-catenin signaling--an in vitro and in vivo study.
Lin, Song-Shu; Ueng, Steve W N; Niu, Chi-Chien; Yuan, Li-Jen; Yang, Chuen-Yung; Chen, Wen-Jer; Lee, Mel S; Chen, Jan-Kan.
Afiliação
  • Lin SS; Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  • Ueng SW; Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  • Niu CC; Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  • Yuan LJ; Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  • Yang CY; Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  • Chen WJ; Department of Orthopaedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
  • Lee MS; Department of Orthopaedics, Chang Gung Memorial Hospital, Chiayi, Taiwan.
  • Chen JK; Department of Physiology, Chang Gung University, Taoyuan, Taiwan. Electronic address: jkc508@mail.cgu.edu.tw.
Stem Cell Res ; 12(1): 260-74, 2014 Jan.
Article em En | MEDLINE | ID: mdl-24291646
We hypothesized that the effect of hyperbaric oxygen (HBO) on bone formation is increased via osteogenic differentiation of bone marrow stromal cells (BMSCs), which is regulated by Wnt3a/ß-catenin signaling. Our in vitro data showed that HBO increased cell proliferation, Wnt3a production, LRP6 phosphorylation, and cyclin D1 expression in osteogenically differentiated BMSCs. The mRNA and protein levels of Wnt3a, ß-catenin, and Runx2 were upregulated while those of GSK-3ß were downregulated after HBO treatment. The relative density ratio (phospho-protein/protein) of Akt and GSK-3ß was both up-regulated while that of ß-catenin was down-regulated after HBO treatment. We next investigated whether HBO affects the accumulation of ß-catenin. Our Western blot analysis showed increased levels of translocated ß-catenin that stimulated the expression of target genes after HBO treatment. HBO increased TCF-dependent transcription, Runx2 promoter/Luc gene activity, and the expression of osteogenic markers of BMSCs, such as alkaline phosphatase activity, type I collagen, osteocalcin, calcium, and the intensity of Alizarin Red staining. HBO dose dependently increased the bone morphogenetic protein (BMP2) and osterix production. We further demonstrated that HBO increased the expression of vacuolar-ATPases, which stimulated Wnt3a secretion from BMSCs. Finally, we showed that the beneficial effects of HBO on bone formation were related to Wnt3a/ß-catenin signaling in a rabbit model by histology, mechanical testing, and immunohistochemical assays. Accordingly, we concluded that HBO increased the osteogenic differentiation of BMSCs by regulating Wnt3a secretion and signaling.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Métodos Terapêuticos e Terapias MTCI: Terapias_biologicas / Oxigenoterapia_hiperbrica Assunto principal: Osteogênese / Oxigênio / Células da Medula Óssea / Beta Catenina / Células-Tronco Mesenquimais / Proteína Wnt3A / Via de Sinalização Wnt Tipo de estudo: Prognostic_studies Idioma: En Revista: Stem Cell Res Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Base de dados: MEDLINE Métodos Terapêuticos e Terapias MTCI: Terapias_biologicas / Oxigenoterapia_hiperbrica Assunto principal: Osteogênese / Oxigênio / Células da Medula Óssea / Beta Catenina / Células-Tronco Mesenquimais / Proteína Wnt3A / Via de Sinalização Wnt Tipo de estudo: Prognostic_studies Idioma: En Revista: Stem Cell Res Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Taiwan