Your browser doesn't support javascript.
loading
Causative Role of Grapevine Red Blotch Virus in Red Blotch Disease.
Yepes, Luz Marcela; Cieniewicz, Elizabeth; Krenz, Björn; McLane, Heather; Thompson, Jeremy R; Perry, Keith Lloyd; Fuchs, Marc.
Afiliação
  • Yepes LM; First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Sec
  • Cieniewicz E; First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Sec
  • Krenz B; First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Sec
  • McLane H; First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Sec
  • Thompson JR; First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Sec
  • Perry KL; First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Sec
  • Fuchs M; First, second, and seventh authors: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456; and third, fourth, fifth, and sixth authors: Plant Pathology and Plant-Microbe Biology Sec
Phytopathology ; 108(7): 902-909, 2018 Jul.
Article em En | MEDLINE | ID: mdl-29436986
Grapevine red blotch virus (GRBV) has a monopartite single-stranded DNA genome and is the type species of the genus Grablovirus in the family Geminiviridae. To address the etiological role of GRBV in the recently recognized red blotch disease of grapevine, infectious GRBV clones were engineered from the genome of each of the two previously identified phylogenetic clades for Agrobacterium tumefaciens-mediated inoculations of tissue culture-grown Vitis spp. plants. Following agroinoculation and one or two dormancy cycles, systemic GRBV infection was detected by multiplex polymerase chain reaction (PCR) in Vitis vinifera exhibiting foliar disease symptoms but not in asymptomatic vines. Infected rootstock genotype SO4 (V. berlandieri × V. riparia) exhibited leaf chlorosis and cupping, while infection was asymptomatic in agroinoculated 110R (V. berlandieri × V. rupestris), 3309C (V. riparia × V. rupestris), and V. rupestris. Spliced GRBV transcripts of the replicase-associated protein coding region accumulated in leaves of agroinfected vines, as shown by reverse-transcription PCR; this was consistent with systemic infection resulting from virus replication. Additionally, a virus progeny identical in nucleotide sequence to the infectious GRBV clones was recovered from agroinfected vines by rolling circle amplification, cloning, and sequencing. Concomitantly, subjecting naturally infected grapevines to microshoot tip culture resulted in an asymptomatic plant progeny that tested negative for GRBV in multiplex PCR. Altogether, our agroinoculation and therapeutic experiments fulfilled Koch's postulates and revealed the causative role of GRBV in red blotch disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Medicinas Tradicionais: Medicinas_tradicionales_de_asia / Medicina_china Assunto principal: Doenças das Plantas / Geminiviridae / Vitis Idioma: En Revista: Phytopathology Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Medicinas Tradicionais: Medicinas_tradicionales_de_asia / Medicina_china Assunto principal: Doenças das Plantas / Geminiviridae / Vitis Idioma: En Revista: Phytopathology Ano de publicação: 2018 Tipo de documento: Article