Your browser doesn't support javascript.
loading
Improved dialysis removal of protein-bound uremic toxins by salvianolic acids.
Li, Jianping; Wang, Yingyi; Xu, Xuejun; Cao, Wenjuan; Shen, Zhiqiang; Wang, Nan; Leng, Jing; Zou, Ning; Shang, Erxin; Zhu, Zhenhua; Guo, Jianming; Duan, Jinao.
Afiliação
  • Li J; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  • Wang Y; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  • Xu X; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  • Cao W; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  • Shen Z; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  • Wang N; Pharmaceutical Department, Nanjing General Hospital of People's Liberation Army, Nanjing 210002, China.
  • Leng J; Pharmaceutical Department, Nanjing General Hospital of People's Liberation Army, Nanjing 210002, China.
  • Zou N; Blood Purification Center, Qingdao Municipal Hospital, Qingdao 266000, China.
  • Shang E; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  • Zhu Z; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
  • Guo J; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic addr
  • Duan J; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic addr
Phytomedicine ; 57: 166-173, 2019 Apr.
Article em En | MEDLINE | ID: mdl-30772752
ABSTRACT

BACKGROUND:

Indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are two key protein-bound uremic toxins that accumulate in patients with end-stage renal disease. IS and pCS cannot be efficiently removed by conventional hemodialysis because they are highly bound to proteins. One promising means to optimize the removal of protein-bound uremic toxins involves using binding competitors to liberate uremic toxins from protein-binding partners.

PURPOSE:

In this study, we try to identify potential binding competitors that can enhance the dialysis removal of IS and pCS in natural compounds of phytomedicine.

METHODS:

We employed microdialysis to evaluate whether Danhong injection (DHI) and its salvianolic acids can increase the free fractions of IS and pCS and thus improve their dialysis efficiency in vitro. Furthermore, we confirmed the positive effects of DHI and salvianolic acids in vivo on chronic kidney disease model rats in which IS and pCS had heavily accumulated.

RESULTS:

DHI significantly increased the dialysis efficiency of IS and pCS by 99.13% and 142.00% in vitro (10-fold dilution), respectively, and by 135.61% and 272.13% in vivo (4.16 ml/kg). Salvianolic acids including lithospermic acid (LA), salvianolic acid A (SaA), tanshinol (DSS), caffeic acid (CA), salvianolic acid B (SaB), protocatechuic aldehyde (PA) and rosmarinic acid (RA) significantly enhanced the dialysis removal of IS and pCS in a concentration-dependent manner. LA, the best competitor of the tested salvianolic acids, increased dialysis efficiency levels of IS and pCS by 197.23% and 198.31% in vitro (400 µM), respectively, and by 119.55% and 127.56% in vivo (24.69 mg/kg).

CONCLUSION:

The removal of protein-bound uremic toxins IS and pCS using DHI or salvianolic acids as protein-bound competitors is superior to previously reported strategies and drugs and may contribute to clinical hemodialysis therapeutic practice.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Medicinas Tradicionais: Medicinas_tradicionales_de_asia / Medicina_china Assunto principal: Ésteres do Ácido Sulfúrico / Medicamentos de Ervas Chinesas / Diálise Renal / Cresóis / Alcenos / Polifenóis / Indicã Idioma: En Revista: Phytomedicine Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Medicinas Tradicionais: Medicinas_tradicionales_de_asia / Medicina_china Assunto principal: Ésteres do Ácido Sulfúrico / Medicamentos de Ervas Chinesas / Diálise Renal / Cresóis / Alcenos / Polifenóis / Indicã Idioma: En Revista: Phytomedicine Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China