Your browser doesn't support javascript.
loading
Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations.
Zhu, Biying; Chen, Lin-Bo; Lu, Mengqian; Zhang, Jing; Han, Jieyun; Deng, Wei-Wei; Zhang, Zheng-Zhu.
Afiliação
  • Zhu B; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China.
  • Chen LB; Tea Research Institute , Yunnan Academy of Agricultural Sciences , Menghai , Yunnan 666201 , China.
  • Lu M; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China.
  • Zhang J; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China.
  • Han J; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China.
  • Deng WW; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China.
  • Zhang ZZ; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology , Anhui Agricultural University , Hefei , Anhui 230036 , China.
J Agric Food Chem ; 67(12): 3400-3411, 2019 Mar 27.
Article em En | MEDLINE | ID: mdl-30830771
ABSTRACT
Caffeine is a crucial secondary metabolic product in tea plants. Although the presence of caffeine in tea plants has been identified, the molecular mechanisms regulating relevant caffeine metabolism remain unclear. For the elucidation of the caffeine biosynthesis and catabolism in Camellia plants, fresh, germinated leaves from four Camellia plants with low (2), normal (1), and high (1) caffeine concentrations, namely, low-caffeine tea 1 (LCT1, Camellia crassicolumna), low-caffeine tea 2 (LCT2, C. crassicolumna), Shuchazao (SCZ, C. sinensis), and Yunkang 43 (YK43, C. sinensis) were used in this research. Transcriptome and purine alkaloids analyses of these Camellia leaves were performed using RNA-Seq and liquid chromatography-mass spectrometry (LC-MS). Moreover, 15N-caffeine tracing was performed to determine the metabolic fate of caffeine in leaves of these plants. Caffeine content was correlated with related gene expression levels, and a quantitative real-time (qRT) PCR analysis of specific genes showed a consistent tendency with the obtained transcriptomic analysis. On the basis of the results of stable isotope-labeled tracer experiments, we discovered a degradation pathway of caffeine to theobromine. These findings could assist researchers in understanding the caffeine-related mechanisms in Camellia plants containing low, normal, and high caffeine content and be applied to caffeine regulation and breeding improvement in future research.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Cafeína / Regulação da Expressão Gênica de Plantas / Camellia sinensis Tipo de estudo: Prognostic_studies Idioma: En Revista: J Agric Food Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Cafeína / Regulação da Expressão Gênica de Plantas / Camellia sinensis Tipo de estudo: Prognostic_studies Idioma: En Revista: J Agric Food Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China