Eutrophication and Related Antibiotic Resistance of Enterococci in the Minjiang River, China.
Microb Ecol
; 80(1): 1-13, 2020 Jul.
Article
em En
| MEDLINE
| ID: mdl-31838570
Antimicrobial resistance (AMR) in the aquatic environment has received increasing attention in recent years, and growing eutrophication problems may contribute to AMR in aquatic ecosystems. To evaluate whether and how eutrophication affects AMR, 40 surface water samples were collected from the Minjiang River, Fujian Province, China. Total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (CODMn) were measured as eutrophication factors. Additionally, enterococci species were isolated and their resistance to six common antibiotics was tested. Eutrophication generally showed a trend of increasing with the flow direction of the Minjiang River, with 25 sites (62.5%) having a TN/TP value over the Redfield value (16:1), which indicated that eutrophication in this region was of phosphorus limitation. High nutrition sites were in or near urban areas. Poor quality water was found in the middle and lower reaches of the Minjiang River system. The resistance frequency of 40 enterococci isolates to the six antibiotics tested was as follows: oxytetracycline > erythromycin > ciprofloxacin > chloramphenicol > ampicillin > vancomycin (70, 50, 17.5, 12.5, 2.5, 0%), and the multi-resistant rate reached 50% with eight resistance phenotypes. AMR also increased along the direction of water flow downstream, and most of the sites with the highest AMR were in or near urban areas, as was true for nutrition levels. Positive correlations between AMR and eutrophication factors (TN, TP, and CODMn) were identified using the Pearson's correlation coefficient, and TN/TP generally was negatively related to AMR. These results indicated that eutrophication may induce or selective for resistance of water-borne pathogens to antibiotics, with a high resistance level and a wide resistance spectrum.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Resistência Microbiana a Medicamentos
/
Enterococcus
/
Rios
/
Eutrofização
Tipo de estudo:
Prognostic_studies
País/Região como assunto:
Asia
Idioma:
En
Revista:
Microb Ecol
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
China