Your browser doesn't support javascript.
loading
Connect-seq to superimpose molecular on anatomical neural circuit maps.
Hanchate, Naresh K; Lee, Eun Jeong; Ellis, Andria; Kondoh, Kunio; Kuang, Donghui; Basom, Ryan; Trapnell, Cole; Buck, Linda B.
Afiliação
  • Hanchate NK; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.
  • Lee EJ; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.
  • Ellis A; Department of Genome Sciences, University of Washington, Seattle, WA 98115.
  • Kondoh K; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.
  • Kuang D; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.
  • Basom R; Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.
  • Trapnell C; Department of Genome Sciences, University of Washington, Seattle, WA 98115.
  • Buck LB; The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195.
Proc Natl Acad Sci U S A ; 117(8): 4375-4384, 2020 02 25.
Article em En | MEDLINE | ID: mdl-32034095
The mouse brain contains about 75 million neurons interconnected in a vast array of neural circuits. The identities and functions of individual neuronal components of most circuits are undefined. Here we describe a method, termed "Connect-seq," which combines retrograde viral tracing and single-cell transcriptomics to uncover the molecular identities of upstream neurons in a specific circuit and the signaling molecules they use to communicate. Connect-seq can generate a molecular map that can be superimposed on a neuroanatomical map to permit molecular and genetic interrogation of how the neuronal components of a circuit control its function. Application of this method to hypothalamic neurons controlling physiological responses to fear and stress reveals subsets of upstream neurons that express diverse constellations of signaling molecules and can be distinguished by their anatomical locations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Neurônios Tipo de estudo: Evaluation_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Neurônios Tipo de estudo: Evaluation_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article