Integration of submerged microfiltration and cold plasma for high-strength livestock excreta.
J Hazard Mater
; 401: 123280, 2021 01 05.
Article
em En
| MEDLINE
| ID: mdl-32653781
Numerous biological treatment techniques have been studied for better management of high-strength livestock urine and manure (LUM) but it is still challenging. To gain an advanced option for LUM management, this study proposes a physicochemical process combining microfiltration (MF) and cold plasma (CP). Experimental design applying single CP, single MF, and the integrated system coupling CP and MF (CP + MF) evaluates the performances of the configurations while reducing hydraulic retention time (HRT) from 3 d to 1 d. Results demonstrate that the CP + MF can maximize the removal efficiencies of total nitrogen (72.4 %), total phosphorus (57.8 %), NH4-N (73.3 %), turbidity (99.1 %), dissolved organic carbon (71.3 %), suspended solids (98.7 %) at HRT 3 d. It was verified that CP, even at the lowest HRT (1 d), significantly reduces membrane resistance (0.4 × 1014 m-1) compared to the control (1.5 × 1014 m-1) which leads to lower transmembrane pressure (TMP, 45.6 kPa) and inclined flux (4.4 L/m2/h) than those of the control (45.6 kPa TMP and 2.2 L/m2/h). These results contribute to the advanced treatment of LUM with a cost-effective and environmentally friendly strategy via technical convergence.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Gases em Plasma
Idioma:
En
Revista:
J Hazard Mater
Ano de publicação:
2021
Tipo de documento:
Article