Your browser doesn't support javascript.
loading
Probing antiviral drugs against SARS-CoV-2 through virus-drug association prediction based on the KATZ method.
Zhou, Liqian; Wang, Juanjuan; Liu, Guangyi; Lu, Qingqing; Dong, Ruyi; Tian, Geng; Yang, Jialiang; Peng, Lihong.
Afiliação
  • Zhou L; School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China.
  • Wang J; School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China.
  • Liu G; School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China.
  • Lu Q; Geneis (Beijing) Co. Ltd., Beijing 100102, China.
  • Dong R; Geneis (Beijing) Co. Ltd., Beijing 100102, China.
  • Tian G; Geneis (Beijing) Co. Ltd., Beijing 100102, China.
  • Yang J; Geneis (Beijing) Co. Ltd., Beijing 100102, China. Electronic address: yangjl@geneis.cn.
  • Peng L; School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China. Electronic address: plhhnu@163.com.
Genomics ; 112(6): 4427-4434, 2020 11.
Article em En | MEDLINE | ID: mdl-32745502
It is urgent to find an effective antiviral drug against SARS-CoV-2. In this study, 96 virus-drug associations (VDAs) from 12 viruses including SARS-CoV-2 and similar viruses and 78 small molecules are selected. Complete genomic sequence similarity of viruses and chemical structure similarity of drugs are then computed. A KATZ-based VDA prediction method (VDA-KATZ) is developed to infer possible drugs associated with SARS-CoV-2. VDA-KATZ obtained the best AUCs of 0.8803 when the walking length is 2. The predicted top 3 antiviral drugs against SARS-CoV-2 are remdesivir, oseltamivir, and zanamivir. Molecular docking is conducted between the predicted top 10 drugs and the virus spike protein/human ACE2. The results showed that the above 3 chemical agents have higher molecular binding energies with ACE2. For the first time, we found that zidovudine may be effective clues of treatment of COVID-19. We hope that our predicted drugs could help to prevent the spreading of COVID.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antivirais / Avaliação Pré-Clínica de Medicamentos / Simulação de Acoplamento Molecular / SARS-CoV-2 Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Genomics Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antivirais / Avaliação Pré-Clínica de Medicamentos / Simulação de Acoplamento Molecular / SARS-CoV-2 Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Genomics Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China