Your browser doesn't support javascript.
loading
The most efficient metazoan swimmer creates a 'virtual wall' to enhance performance.
Gemmell, Brad J; Du Clos, Kevin T; Colin, Sean P; Sutherland, Kelly R; Costello, John H.
Afiliação
  • Gemmell BJ; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
  • Du Clos KT; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
  • Colin SP; Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
  • Sutherland KR; Marine Biology/Environmental Sciences, Roger Williams University, Bristol, RI 02809, USA.
  • Costello JH; Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA.
Proc Biol Sci ; 288(1942): 20202494, 2021 01 13.
Article em En | MEDLINE | ID: mdl-33402068
ABSTRACT
It has been well documented that animals (and machines) swimming or flying near a solid boundary get a boost in performance. This ground effect is often modelled as an interaction between a mirrored pair of vortices represented by a true vortex and an opposite sign 'virtual vortex' on the other side of the wall. However, most animals do not swim near solid surfaces and thus near body vortex-vortex interactions in open-water swimmers have been poorly investigated. In this study, we examine the most energetically efficient metazoan swimmer known to date, the jellyfish Aurelia aurita, to elucidate the role that vortex interactions can play in animals that swim away from solid boundaries. We used high-speed video tracking, laser-based digital particle image velocimetry (dPIV) and an algorithm for extracting pressure fields from flow velocity vectors to quantify swimming performance and the effect of near body vortex-vortex interactions. Here, we show that a vortex ring (stopping vortex), created underneath the animal during the previous swim cycle, is critical for increasing propulsive performance. This well-positioned stopping vortex acts in the same way as a virtual vortex during wall-effect performance enhancement, by helping converge fluid at the underside of the propulsive surface and generating significantly higher pressures which result in greater thrust. These findings advocate that jellyfish can generate a wall-effect boost in open water by creating what amounts to a 'virtual wall' between two real, opposite sign vortex rings. This explains the significant propulsive advantage jellyfish possess over other metazoans and represents important implications for bio-engineered propulsion systems.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Natação / Cifozoários Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Biol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Natação / Cifozoários Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Biol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos