Your browser doesn't support javascript.
loading
Exploring the Potential Mechanism of Shennao Fuyuan Tang for Ischemic Stroke Based on Network Pharmacology and Molecular Docking.
Li, Jia Min; Mu, Zhen Ni; Zhang, Tian Tian; Li, Xin; Shang, Yan; Hu, Guo Heng.
Afiliação
  • Li JM; Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
  • Mu ZN; Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
  • Zhang TT; Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
  • Li X; Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
  • Shang Y; Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
  • Hu GH; Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
Article em En | MEDLINE | ID: mdl-34603472
ABSTRACT

METHODS:

Screen the biologically active components and potential targets of SNFYT through Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and related literature. In addition, DrugBank, OMIM, DisGeNET, and the Therapeutic Target Database were searched to explore the therapeutic targets of IS. The cross-targets of SNFYT potential targets and IS treatment targets were taken as candidate gene targets, and GO and KEGG enrichment analyses were performed on the candidate targets. On this basis, the SNFYT-component-target network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.7.2. Finally, AutoDock was used to verify the molecular docking of core components and core targets.

RESULTS:

We screened out 95 potentially active components and 143 candidate targets. SNFYT-component-target network, PPI network, and Cytoscape analysis identified four core active ingredients and 14 core targets. GO enrichment analyzed 2333 biological processes, 79 cell components, and 149 molecular functions. There are 170 KEGG-related signal pathways (P < 0.05), including the IL-17 signal pathway, TNF signal pathway, and HIF-1 signal pathway. The molecular docking results of the core components and the core targets showed good binding power.

CONCLUSIONS:

SNFYT may achieve the effect of treating ischemic stroke through its anti-inflammatory effect through a signal pathway with core targets as the core.

Texto completo: 1 Base de dados: MEDLINE Medicinas Tradicionais: Medicinas_tradicionales_de_asia / Medicina_china Idioma: En Revista: Evid Based Complement Alternat Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Medicinas Tradicionais: Medicinas_tradicionales_de_asia / Medicina_china Idioma: En Revista: Evid Based Complement Alternat Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China