Abiotic factors and aging alter the physicochemical characteristics and toxicity of Phosphorus nanomaterials to zebrafish embryos.
NanoImpact
; 25: 100387, 2022 01.
Article
em En
| MEDLINE
| ID: mdl-35559893
Nanoscale phosphorus (P)-based formulations are being investigated as potentially new fertilizers to overcome the challenges of conventional bulk P fertilizers in agriculture, including low efficacy rates and high application levels. After agricultural applications, the NMs may be released into aquatic environments and transform over time (by aging) or in the presence of abiotic factors such as natural organic matter or sunlight exposure. It is, therefore, important to investigate the physicochemical changes of NMs in environmentally realistic conditions and assess their potential acute and sublethal toxic effects on aquatic organisms. To investigate this, two separate studies were conducted: 1. the effects of 3-months aged P-based NMs on zebrafish embryos, and 2. the influence of humic acid (HA), UV exposure, or a combination of both on P-based NM toxicity in zebrafish embryos. Four different types of nanohydroxyapatites (nHAPs) and a nanophosphorus (nP) were included in the study. These NMs differed in their physicochemical properties, most prominently their shape and size. Environmental transformations were observed for P-based NMs due to aging or interaction with abiotic factors. The aging of the NMs increased the hydrodynamic diameter (HDD) of rod- and needle-shaped NMs and decreased the size of the platelet and spherical NMs, whereas interactions with HA and UV decreased the NMs' HDD. It was observed that no LC50 (survival) and IC50 (hatch and heart rates) were obtained when the zebrafish embryos were exposed to the aged NMs or when NMs were added in the presence of HA and UV. Overall, these results suggest that P-based NMs cause no acute toxicity and minimal sub-lethal toxicity to zebrafish embryos in environmentally realistic experimental conditions.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Peixe-Zebra
/
Nanoestruturas
Idioma:
En
Revista:
NanoImpact
Ano de publicação:
2022
Tipo de documento:
Article