Your browser doesn't support javascript.
loading
Use of gamma radiation and artificial neural network techniques to monitor characteristics of polyduct transport of petroleum by-products.
Salgado, W L; Dam, R S F; Puertas, E J A; Salgado, C M; Silva, A X.
Afiliação
  • Salgado WL; Programa de Engenharia Nuclear - (PEN/COPPE), Universidade Federal do Rio de Janeiro - (UFRJ), Avenida Horácio de Macedo 2030, G - 206, 21941-914 Cidade Universitária, RJ, Brazil; Instituto de Engenharia Nuclear - (DIRAD/IEN), Rua Hélio de Almeida 75, 21941-906 Cidade Universitária, RJ, Brazil. Elec
  • Dam RSF; Programa de Engenharia Nuclear - (PEN/COPPE), Universidade Federal do Rio de Janeiro - (UFRJ), Avenida Horácio de Macedo 2030, G - 206, 21941-914 Cidade Universitária, RJ, Brazil; Instituto de Engenharia Nuclear - (DIRAD/IEN), Rua Hélio de Almeida 75, 21941-906 Cidade Universitária, RJ, Brazil. Elec
  • Puertas EJA; Programa de Engenharia Nuclear - (PEN/COPPE), Universidade Federal do Rio de Janeiro - (UFRJ), Avenida Horácio de Macedo 2030, G - 206, 21941-914 Cidade Universitária, RJ, Brazil. Electronic address: eddieavilan@gmail.com.
  • Salgado CM; Instituto de Engenharia Nuclear - (DIRAD/IEN), Rua Hélio de Almeida 75, 21941-906 Cidade Universitária, RJ, Brazil. Electronic address: otero@ien.gov.br.
  • Silva AX; Programa de Engenharia Nuclear - (PEN/COPPE), Universidade Federal do Rio de Janeiro - (UFRJ), Avenida Horácio de Macedo 2030, G - 206, 21941-914 Cidade Universitária, RJ, Brazil. Electronic address: ademir@con.ufrj.br.
Appl Radiat Isot ; 186: 110267, 2022 Aug.
Article em En | MEDLINE | ID: mdl-35561550
This study presents a methodology based on the dual-mode gamma densitometry technique in combination with artificial neural networks to simultaneously determine type and quantity of four different fluids (Gasoline, Glycerol, Kerosene and Fuel Oil) to assist operators of a fluid transport system in pipelines commonly found in the petrochemical industry, as it is necessary to continuously monitor information about the fluids being transferred. The detection system is composed of a 661.657 keV (137Cs) gamma-ray emitting source and two NaI(Tl) scintillation detectors to record transmitted and scattered photons. The information recorded in both detectors was directly applied as input data for the artificial neural networks. The proposed intelligent system consists of three artificial neural networks capable of predicting the fluid volume percentages (purity level) with 94.6% of all data with errors less than 5% and MRE of 1.12%, as well as identifying the pair of fluids moving in the pipeline with 95.9% accuracy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Petróleo / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: Appl Radiat Isot Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Petróleo / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: Appl Radiat Isot Ano de publicação: 2022 Tipo de documento: Article