Your browser doesn't support javascript.
loading
Osteogenic activities of four calcium-chelating microalgae peptides.
Yu, Huilin; Chen, Yixuan; Zhu, Jiajin.
Afiliação
  • Yu H; Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
  • Chen Y; Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
  • Zhu J; Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
J Sci Food Agric ; 102(14): 6643-6649, 2022 Nov.
Article em En | MEDLINE | ID: mdl-35603586
BACKGROUND: Adequate calcium intake is necessary to prevent osteoporosis, which poses significant public health challenges. The natural bioactive peptide calcium chelates have been regarded as superior calcium supplements. Microalgae peptides are regarded as potential candidates for protection from bone loss in osteoporosis. This study aimed to prepare microalgae calcium-chelating peptides from four microalgae proteins and assess their osteogenic activities in osteoporosis-like zebrafish. RESULTS: After in vitro gastrointestinal digestion, 4.42% Chlorella pyrenoidosa protein, 2.74% Nannochloropsis oceanica protein, 6.07% Arthospira platensis protein and 10.47% Dunaliella salina protein were retained. The calcium-chelating capacities of four microalgae protein hydrolysates (MPHs) ranged from 14.10 ± 7.16% to 34.11 ± 9.34%. CaCl2 addition increased the maximum absorption peaks, absorption intensities and particle sizes of MPHs. Calcium-chelating MPHs showed stronger osteogenic activities than MPHs in the osteoporosis-like zebrafish model, with significantly increased mineralized tissue area and integrated optical density. CONCLUSION: Microalgae proteins have favorable digestibilities. Among the four MPHs, Nannochloropsis oceanica protein hydrolysates showed the highest calcium-chelating capacity, which might be due to its high degree of hydrolysis after in vitro digestion and high content of Ser, Tyr, Thr, Asp and Glu. The absorption intensities and particle sizes of MPHs both increased after calcium addition. MPH treatment could reverse dexamethasone-induced osteoporosis of zebrafish, and MPHs-Ca chelates showed higher osteogenic activities in osteoporosis-like phenotype zebrafish. © 2022 Society of Chemical Industry.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoporose / Chlorella / Estramenópilas / Microalgas Tipo de estudo: Prognostic_studies Idioma: En Revista: J Sci Food Agric Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoporose / Chlorella / Estramenópilas / Microalgas Tipo de estudo: Prognostic_studies Idioma: En Revista: J Sci Food Agric Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China