Your browser doesn't support javascript.
loading
Engineered Organosilica Hybrid Micelles for Photothermal-enhanced Starvation Cancer Therapy.
Li, Xianglong; Wu, Huan; Jiang, Cong; Zou, Jinglin; Wang, Qinghua; Guan, Mengjia; Hao, Ji-Na; Cao, Yuanyuan; Li, Yongsheng.
Afiliação
  • Li X; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
  • Wu H; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
  • Jiang C; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China.
  • Zou J; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
  • Wang Q; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
  • Guan M; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
  • Hao JN; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
  • Cao Y; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
  • Li Y; Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East C
Chem Asian J ; 17(17): e202200570, 2022 Sep 01.
Article em En | MEDLINE | ID: mdl-35785417
ABSTRACT
Glucose oxidase (GOD)-based starvation therapy (ST), which inhibits the growth and proliferation of cancer cells by consuming glucose, has attracted intensive attention as an emerging non-invasive method for fighting cancers. However, the enzyme activity of GOD is greatly limited in vivo because of its optimal catalytic activity in the temperature range of 43-60 °C. Herein, a photothermal-enhanced starvation strategy is developed based on our engineered organosilica hybrid micelles (TiO2-x @POMs-GOD), in which the fluoride-doped TiO2-x with photothermal properties is encapsulated in the cores of organosilica cross-linked micelles and GOD is immobilized on the carboxyl groups of PAA segments. With its internalization by cancer cells, the conjugated GOD can effectively deplete glucose to achieve the ST effect, which can be remarkably enhanced by the loaded fluoride-doped TiO2-x with NIR laser irradiation, thus cooperatively contributing to the efficient treatment of TiO2-x @POMs-GOD on various cancer cells. This suggests great potential for TiO2-x @POMs-GOD in photothermal-enhanced ST in vivo.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Hipertermia Induzida / Neoplasias Idioma: En Revista: Chem Asian J Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Hipertermia Induzida / Neoplasias Idioma: En Revista: Chem Asian J Ano de publicação: 2022 Tipo de documento: Article