Your browser doesn't support javascript.
loading
Deep autoencoder-powered pattern identification of sleep disturbance using multi-site cross-sectional survey data.
Lee, Hyeonhoon; Choi, Yujin; Son, Byunwoo; Lim, Jinwoong; Lee, Seunghoon; Kang, Jung Won; Kim, Kun Hyung; Kim, Eun Jung; Yang, Changsop; Lee, Jae-Dong.
Afiliação
  • Lee H; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.
  • Choi Y; KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
  • Son B; Department of Korean Medicine, Combined Dispensary, 7th Corps, Republic of Korea Army, Icheon-si, South Korea.
  • Lim J; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.
  • Lee S; Department of Acupuncture and Moxibustion, Wonkwang University Gwangju Korean Medicine Hospital, Gwangju, South Korea.
  • Kang JW; Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.
  • Kim KH; Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.
  • Kim EJ; School of Korean Medicine, Pusan National University, Yangsan, South Korea.
  • Yang C; Department of Acupuncture and Moxibustion Medicine, Dongguk University Bundang Oriental Hospital, Seongnam-si, South Korea.
  • Lee JD; KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
Front Med (Lausanne) ; 9: 950327, 2022.
Article em En | MEDLINE | ID: mdl-35966837
Pattern identification (PI) is a diagnostic method used in Traditional East Asian medicine (TEAM) to select appropriate and personalized acupuncture points and herbal medicines for individual patients. Developing a reproducible PI model using clinical information is important as it would reflect the actual clinical setting and improve the effectiveness of TEAM treatment. In this paper, we suggest a novel deep learning-based PI model with feature extraction using a deep autoencoder and k-means clustering through a cross-sectional study of sleep disturbance patient data. The data were obtained from an anonymous electronic survey in the Republic of Korea Army (ROKA) members from August 16, 2021, to September 20, 2021. The survey instrument consisted of six sections: demographics, medical history, military duty, sleep-related assessments (Pittsburgh sleep quality index (PSQI), Berlin questionnaire, and sleeping environment), diet/nutrition-related assessments [dietary habit survey questionnaire and nutrition quotient (NQ)], and gastrointestinal-related assessments [gastrointestinal symptom rating scale (GSRS) and Bristol stool scale]. Principal component analysis (PCA) and a deep autoencoder were used to extract features, which were then clustered using the k-means clustering method. The Calinski-Harabasz index, silhouette coefficient, and within-cluster sum of squares were used for internal cluster validation and the final PSQI, Berlin questionnaire, GSRS, and NQ scores were used for external cluster validation. One-way analysis of variance followed by the Tukey test and chi-squared test were used for between-cluster comparisons. Among 4,869 survey responders, 2,579 patients with sleep disturbances were obtained after filtering using a PSQI score of >5. When comparing clustering performance using raw data and extracted features by PCA and the deep autoencoder, the best feature extraction method for clustering was the deep autoencoder (16 nodes for the first and third hidden layers, and two nodes for the second hidden layer). Our model could cluster three different PI types because the optimal number of clusters was determined to be three via the elbow method. After external cluster validation, three PI types were differentiated by changes in sleep quality, dietary habits, and concomitant gastrointestinal symptoms. This model may be applied to the development of artificial intelligence-based clinical decision support systems through electronic medical records and clinical trial protocols for evaluating the effectiveness of TEAM treatment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Guideline / Observational_studies / Prevalence_studies / Prognostic_studies Idioma: En Revista: Front Med (Lausanne) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Coréia do Sul

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Guideline / Observational_studies / Prevalence_studies / Prognostic_studies Idioma: En Revista: Front Med (Lausanne) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Coréia do Sul