Salidroside alleviates dexamethasone-induced inhibition of bone formation via transforming growth factor-beta/Smad2/3 signaling pathway.
Phytother Res
; 37(5): 1938-1950, 2023 May.
Article
em En
| MEDLINE
| ID: mdl-36567454
Glucocorticoid-induced osteoporosis is the third epidemic osteoporosis following postmenopausal and senileosteoporosis. According to one study, salidroside made ovariectomized rats' bones strong. Salidroside's potential for treating glucocorticoid-induced osteoporosis remains unproven. This study aimed to investigate the protective effect and mechanism of salidroside on dexamethasone-induced osteogenic differentiation and bone formation in MC3T3-E1 cells and zebrafish. The study proved that salindroside had no harmful impact on MC3T3E1 cells. Salidroside significantly relieved dexamethasone-induced inhibition of ALP (alkaline phosphatase) activity and mineralization in MC3T3-E1 cells, and promoted osteogenic differentiation of cells. Salidroside increased the expression of osteopontin (OPN), runt-related transcription factor 2 (Runx2), osterix (Osx), transforming growth factor-beta (TGF-ß) proteins and promoted the phosphorylation of Smad2/3 in MC3T3-E1 cells treated with dexamethasone. In addition, the effect of salidroside in relieving dexamethasone-induced inhibition of osteogenic differentiation in MC3T3-E1 cells can be blocked by TGF-ß receptor type I/II inhibitor (LY2109761). At the same time, we found that salidroside significantly alleviated the inhibition of dexamethasone-induced bone formation in zebrafish and promoted the mineralization of zebrafish skulls. LY2109761 reversed the protective impact of salidroside on dexamethasone-mediated bone impairment in zebrafish. These findings suggested that salidroside alleviated dexamethasone-induced inhibition of osteogenic differentiation and bone formation via TGF-ß/Smad2/3 signaling pathway.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Osteogênese
/
Osteoporose
Idioma:
En
Revista:
Phytother Res
Ano de publicação:
2023
Tipo de documento:
Article