Your browser doesn't support javascript.
loading
Mitochondria-Mediated HSP Inhibition Strategy for Enhanced Low-Temperature Photothermal Therapy.
Liu, Wenting; Di, Jianhao; Ma, Yan; Wang, Shuo; Meng, Meng; Yin, Yongmei; Xi, Rimo; Zhao, Xiujie.
Afiliação
  • Liu W; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
  • Di J; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
  • Ma Y; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
  • Wang S; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
  • Meng M; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
  • Yin Y; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
  • Xi R; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
  • Zhao X; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
ACS Appl Mater Interfaces ; 15(22): 26252-26262, 2023 Jun 07.
Article em En | MEDLINE | ID: mdl-37218741
ABSTRACT
Low-temperature photothermal therapy (PTT) has the advantage of causing less damage to normal tissues and has attracted great attention in recent years. However, the efficacy of low-temperature PTT is restricted by the overexpression of heat shock proteins (HSPs), specifically HSP70 and HSP90. Inhibiting the function of these HSPs is a major strategy used in the development of new cancer therapies. Herein, we designed four T780T-containing thermosensitive nanoparticles to interrupt the energy supply for HSP expression using their TPP-based mitochondrial targeting action. The reversal behavior of the nanoparticles on the gambogic acid (GA)-induced compensatory increase of HSP70 was investigated in vitro by Western blot and in vivo by immunohistochemistry. The in vivo anticancer efficacy of the low-temperature PTT based on these thermosensitive nanoparticles was also systematically examined. The design proposes for the first time to utilize and elucidate the mechanism of the mitochondrial targeting of T780T-containing NPs in synergy with the HSP90 inhibition of GA to achieve an effective low-temperature PTT. This work not only provides a novel pathway for the dual inhibition of HSP70 and HSP90 but also opens up a new approach for low-temperature PTT of tumors.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China