Your browser doesn't support javascript.
loading
Discovery of the covalent SARS-CoV-2 Mpro inhibitors from antiviral herbs via integrating target-based high-throughput screening and chemoproteomic approaches.
Zhang, Ya-Ni; Zhu, Guang-Hao; Liu, Wei; Chen, Xi-Xiang; Xie, Yuan-Yuan; Xu, Jian-Rong; Jiang, Mei-Fang; Zhuang, Xiao-Yu; Zhang, Wei-Dong; Chen, Hong-Zhuan; Ge, Guang-Bo.
Afiliação
  • Zhang YN; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Zhu GH; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Liu W; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Chen XX; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Xie YY; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Xu JR; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Jiang MF; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Zhuang XY; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Zhang WD; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Chen HZ; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Ge GB; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
J Med Virol ; 95(11): e29208, 2023 11.
Article em En | MEDLINE | ID: mdl-37947293
ABSTRACT
The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Métodos Terapêuticos e Terapias MTCI: Terapias_biologicas Assunto principal: Plantas Medicinais / COVID-19 Idioma: En Revista: J Med Virol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Métodos Terapêuticos e Terapias MTCI: Terapias_biologicas Assunto principal: Plantas Medicinais / COVID-19 Idioma: En Revista: J Med Virol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China