Complementary immunolocalization patterns of cell wall hydroxyproline-rich glycoproteins studied with the use of antibodies directed against different carbohydrate epitopes.
Plant Physiol
; 102(3): 891-901, 1993 Jul.
Article
em En
| MEDLINE
| ID: mdl-7506427
Antisera raised against the major hydroxyproline-rich glycoprotein (HRGP) in carrot (Daucus carota L.) taproot, extensin-1, and a minor HRGP, extensin-2, were characterized by western blot analysis, enzyme-linked immunosorbent assay, and periodate oxidation and found to be directed against carbohydrate epitopes shared by both glycoproteins. The anti-extensin-1 antibodies (gE1) target periodate-sensitive epitopes and may recognize the terminal alpha-1,3-arabinoside of extensin-1. The anti-extensin-2 antibodies (gE2) recognize periodate-insensitive epitopes, possibly binding the reducing, internal beta-1,2-arabinosides on the carbohydrate side chains. Despite the cross-reactivity of these antibodies, immunolocalization studies of carrot taproot and green bean (Phaseolus vulgaris L.) leaf tissues reveal a spatial segregation of gE1- and gE2-labeling patterns. The gE1 antibodies bind only to the cellulose-rich region of the cell wall (J.P. Staehelin and L.A. Stafstrom [1988] Planta 174: 321-332), whereas gE2 labeling is restricted to the expanded middle lamella at three cell junctions. Periodate oxidation of nonosmicated, thin-sectioned tissue abolishes gE1 labeling but leads to labeling of the entire cell wall by gE2, presumably as a result of unmasking cryptic epitopes on extensin-1 in the cellulose layer. Purified extensin-2 protein is more efficient than extensin-1 protein at agglutinating avirulent Pseudomonas strains lacking extracellular polysaccharide. Our results indicate that extensin-2 does not form a heterologous HRGP network with extensin-1 and that, in contrast to extensin-1, which appears to serve a structural role, extensin-2 could participate in passive defense responses against phytopathogenic bacteria.
Texto completo:
1
Base de dados:
MEDLINE
Métodos Terapêuticos e Terapias MTCI:
Terapias_biologicas
Assunto principal:
Proteínas de Plantas
/
Plantas Medicinais
/
Verduras
/
Glicoproteínas
/
Fabaceae
/
Epitopos
Idioma:
En
Revista:
Plant Physiol
Ano de publicação:
1993
Tipo de documento:
Article