Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Int J Pharm ; 666: 124850, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39437848

RESUMEN

The use of dissolution imaging in analysing the behaviourof hydrophilic matrices and various types of excipients is examined in this study.The main aim was to investigate how different ratios of excipients with different solubility properties, such as lactose, microcrystalline cellulose, and dicalcium phosphate impact on the swelling properties and propranolol hydrochloride (PPN) release characteristics of polyethylene oxide matrix compacts. The surface properties of the compacts were investigated using a focus variation microscope after which dissolution studies were conducted to determine compact swelling and drug release properties. Smr2, a surface parameter representing the percentage of deeper valley structures on the surface, was used to calculate the proportion of the compact surface available for retaining lubrication (dissolution media in this case). Smr2 values of 83 and 84 were measured for the 1:1 and 1:3 PEO lactose compacts, respectively. This parameter utilised in this experiment gives an indication of the compact surface available for the initial hydration process and suggests a higher rate of hydration for the 1:1 and 1:3 PEO lactose compacts. The swelling studies revealed that a higher PEO ratio (3:1) resulted in more extensive gel layer formation as compared to the 1:3 compacts. All PEO:excipient compacts exhibited faster drug release than the compacts comprising PEO as the sole excipient. The quantity of PEO present was thus crucial in influencing the capacity of the matrix to control the release of PPN. This study underscores the potential for modifying drug release by altering the quantity of the matrix gel-former (PEO in this case) as well as the type or ratio of excipient used. The study also highlights the novelty of using UV dissolution imaging to image and quantify swelling and drug dissolution processes as well as providing qualitative observations such as channel formation which can support formulation optimisation and mechanistic understanding.

2.
Int J Pharm ; 661: 124436, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977165

RESUMEN

Biotherapeutics is the fastest growing class of drugs administered by subcutaneous injection. In vitro release testing mimicking physiological conditions at the injection site may guide formulation development and improve biopredictive capabilities. Here, anin vitrorelease cartridge (IVR cartridge) comprising a porous agarose matrix emulating subcutaneous tissue was explored. The objective was to assess effects of medium composition and incorporation of human serum albumin into the matrix. Drug disappearance was assessed for solution, suspension and in situ precipitating insulin products (Actrapid, Levemir, Tresiba, Mixtard 30, Insulatard, Lantus) using the flow-based cartridge. UV-Vis imaging and light microscopy visualized dissolution, precipitation and albumin binding phenomena at the injection site. Divalent cations present in the release medium resulted in slower insulin disappearance for suspension-based and in situ precipitating insulins. Albumin-binding acylated insulin analogs exhibited rapid disappearance from the cartridge; however, sustained retention was achieved by coupling albumin to the matrix. An in vitro-in vivorelation was established for the non-albumin-binding insulins.The IVR cartridge is flexible with potential in formulation development as shown by the ability to accommodate solutions, suspensions, and in situ forming formulations while tailoring of the system to probe in vivo relevant medium effects and tissue constituent interactions.


Asunto(s)
Liberación de Fármacos , Inyecciones Subcutáneas , Humanos , Insulina/administración & dosificación , Insulina/química , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sefarosa/química , Unión Proteica , Química Farmacéutica/métodos , Masculino
4.
Adv Drug Deliv Rev ; 203: 115136, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37944644

RESUMEN

The limitations inherent in conventional cancer treatment methods have stimulated recent efforts towards the design of safe nanomedicines with high efficacy for combating cancer through various promising approaches. A plethora of nanoparticles has been introduced in the development of cancer nanomedicines. Among them, different lipid nanoparticles are attractive for use due to numerous advantages and unique opportunities, including biocompatibility and targeted drug delivery. However, a comprehensive understanding of nano-bio interactions is imperative to facilitate the translation of recent advancements in the development of cancer nanomedicines into clinical practice. In this contribution, we focus on lipoprotein-mimicking nanoparticles, which possess unique features and compositions facilitating drug transport through receptor binding mechanisms. Additionally, we describe potential applications of siRNA lipid nanoparticles in the future design of anticancer nanomedicines. Thus, this review highlights recent progress, challenges, and opportunities of lipid-based lipoprotein-mimicking nanoparticles and siRNA nanocarriers designed for the targeted delivery of anticancer therapeutic agents.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , ARN Interferente Pequeño/genética , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Antineoplásicos/química , Lipoproteínas
5.
Anal Chem ; 95(43): 15861-15866, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37857348

RESUMEN

Transport within human tissue matrices, e.g., the subcutaneous tissue, exhibits some resemblance to chromatographic processes. Here, a porous matrix comprising agarose beads compatible with UV-vis imaging was developed for a parallel piped rectangular flow cell (4 mm light path). Introduction of high-molecular weight dextrans (Mr ∼ 200000 and ∼500000) at 10% (w/v) rendered imaging possible by providing optical clearing of the turbid porous matrix, resulting in improved transmittance as well as resolution (from 400 to 180 µm) at 280 nm, as well as 520 nm. The interplay between diffusive and convective transport at 0 < Pe ≤ 28 was visualized at 280 nm upon injection of dexamethasone suspensions. Real-time UV-vis imaging showed in-flow cell the effect of incorporating ion-exchange resins on the retention of infliximab, lysozyme, and α-lactalbumin. The ion-exchange matrix may serve as a surrogate for polyelectrolytes in the subcutaneous tissue, assessing the potential role of electrostatic interactions of biotherapeutics upon injection. UV-vis imaging of size-exclusion chromatographic matrixes may be of interest in its own right and potentially develop into a characterization tool for injectables.


Asunto(s)
Lactalbúmina , Tejido Subcutáneo , Humanos , Cromatografía por Intercambio Iónico/métodos
6.
Pharmaceutics ; 15(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37896160

RESUMEN

The development of effective drug delivery systems remains a focus of extensive research to enhance therapeutic outcomes. Among these, in situ forming gels (ISG) have emerged as a promising avenue for controlled drug release. This research focuses on the mathematical modeling of levofloxacin HCl (Lv) release from zein-based ISG using the cup method, aiming to mimic the environment of a periodontal pocket. The drug release behavior of the ISGs was investigated through experimental observations and numerical simulations employing forward and central difference formula. Notably, the experimental data for drug release from the 20% w/w zein-based ISG formulations closely aligned with the simulations obtained from numerical mechanistic modeling. In summary, 20% w/w zein-based ISG formulations demonstrated nearly complete drug release with the maximum drug concentration at the edge of the matrix phase values consistently around 100-105%, while 25% w/w zein-based ISG formulations exhibited somewhat lower drug release extents, with values ranging from 70-90%. Additionally, the rate of drug transport from the polymer matrix to the external phase influenced initial release rates, resulting in a slower release. The utilization of glycerol formal as a solvent extended drug release further than dimethyl sulfoxide, thanks to denser matrices formed by high-loading polymers that acted as robust barriers to solvent removal and drug diffusion. Furthermore, UV-vis imaging was utilized to visualize the matrix formation process and solvent diffusion within the ISGs. The imaging results offered valuable insights into the matrix formation kinetics, controlled drug release mechanisms, and the influence of solvent properties on drug diffusion. The combination of mathematical modeling and experimental visualization provides a comprehensive understanding of drug release from zein-based ISGs and offers a foundation for tailored drug delivery strategies.

7.
Int J Pharm ; 623: 121880, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35661744

RESUMEN

In situ formation of high viscous inverse lyotropic non-lamellar liquid crystalline phases is a promising approach for sustained drug delivery in the joint. The in situ forming process on exposure of two diclofenac-loaded preformulations to aqueous media was characterized with respect to depot size and shape, initial release and structural transitions using UV-Vis imaging and spatially and time-resolved synchrotron small-angle X-ray scattering (SAXS). The preformulations consisted of 10 % (w/w) ethanol, 10 % (w/w) water and a binary lipid mixture of glycerol monooleate (GMO):1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) or GMO:medium chain triglycerides (MCT). Upon injection of preformulations into an employed injection-cell containing excess of bio-relevant medium, rapid generation of liquid crystalline depots was observed. UV-Vis images and constructed 2D SAXS maps of the injection-cell showed depots with different shapes and sizes, and features with high nanostructural heterogeneity. More extensive swelling of the GMO:DOPG-based preformulation was observed compared to the GMO:MCT-based preformulation. The UV image analysis found that a higher amount of diclofenac was released in the image area after 20 h from the GMO:MCT depot compared to the GMO:DOPG depot. The injection-cell setup employing UV-Vis imaging and synchrotron SAXS constitutes an attractive approach for evaluating the in situ forming processes of liquid crystalline depots.


Asunto(s)
Cristales Líquidos , Diclofenaco , Composición de Medicamentos , Cristales Líquidos/química , Dispersión del Ángulo Pequeño , Triglicéridos , Agua/química , Difracción de Rayos X
8.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408971

RESUMEN

A UV imaging release-testing setup comprising an agarose gel as a model for tumorous tissue was developed. The setup was optimized with respect to agarose concentration (0.5% (w/v)), injection procedure, and temperature control. A repeatable injection protocol was established allowing injection into cavities with well-defined geometries. The effective resolution of the SDi2 UV imaging system is 30-80 µm. The linear range of the imaging system is less than that of typical spectrophotometers. Consequently, non-linear cAMP calibration curves were applied for quantification at 280 nm. The degree of deviation from Beer's law was affected by the background absorbance of the gel matrix. MATLAB scripts provided hitherto missing flexibility with respect to definition and utilization of quantification zones, contour lines facilitating visualization, and automated, continuous data analysis. Various release patterns were observed for an aqueous solution and in situ forming Pluronic F127 hydrogel and PLGA implants containing cAMP as a model for STING ligands. The UV imaging and MATLAB data analysis setup constituted a significant technical development in terms of visualizing behavior for injectable formulations intended for intra-tumoral delivery, and, thereby, a step toward establishment of a bio-predictive in vitro release-testing method.


Asunto(s)
Hidrogeles , Poloxámero , Sefarosa , Temperatura
9.
Molecules ; 27(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458703

RESUMEN

In the development of therapeutic proteins, analytical assessment of structural stability and integrity constitutes an important activity, as protein stability and integrity influence drug efficacy, and ultimately patient safety. Existing analytical methodologies solely rely on relative changes in optical properties such as fluorescence or scattering upon thermal or chemical perturbation. Here, we present an absolute analytical method for assessing protein stability, structure, and unfolding utilizing Taylor dispersion analysis (TDA) and LED-UV fluorescence detection. The developed TDA method measures the change in size (hydrodynamic radius) and intrinsic fluorescence of a protein during in-line denaturation with guanidinium hydrochloride (GuHCl). The conformational stability of the therapeutic antibody adalimumab and human serum albumin were characterized as a function of pH. The simple workflow and low sample consumption (40 ng protein per data point) of the methodology make it ideal for assessing protein characteristics related to stability in early drug development or when having a scarce amount of sample available.


Asunto(s)
Hidrodinámica , Proteínas , Guanidina , Humanos , Desnaturalización Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas/química , Albúmina Sérica Humana
10.
Sci Rep ; 12(1): 4670, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304547

RESUMEN

Biopharmaceuticals have revolutionized the treatment of many diseases such as diabetes, cancer, and autoimmune disorders. These complex entities provide unique advantages like high specificity towards their target. Unfortunately, biopharmaceuticals are also prone to elicit undesired immunogenic responses (immunogenicity), compromising treatment efficacy as well as patient safety due to severe adverse effects including life threatening conditions. Current immunogenicity assays are hampered by immobilization procedures, complicated sample pre-treatment, or rely on cell-based methods which all prevent reliable and continuous monitoring of patients. In this work, we present Flow Induced Dispersion Analysis (FIDA) for assessment of immunogenicity and drug activity in serum samples from arthritis patients receiving adalimumab. FIDA is a first principle technique for size-based characterization of biomolecules and their complexes under biologically relevant conditions. The FIDA methodology rely on an absolute and quantitative readout (hydrodynamic radius) thus reducing the need for positive and negative controls. Here, FIDA is applied for evaluating active adalimumab in serum by studying the interaction with its target tumor necrosis factor alpha (TNF-α). We report proof of principle for a quantitative approach for stratifying patients exhibiting presence of neutralizing and non-neutralizing antibodies based on their individual drug activity pattern. Further, it can be applied to any biopharmaceutical having soluble drug targets and it holds potential in a companion diagnostics setting.


Asunto(s)
Productos Biológicos , Factor de Necrosis Tumoral alfa , Adalimumab/uso terapéutico , Bioensayo , Humanos , Hidrodinámica
11.
Int J Pharm ; 609: 121183, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34653562

RESUMEN

In situ forming implants are exposed to an extracellular matrix resembling a gel rather than aqueous solution upon subcutaneous administration. The aim of study was to develop a gel-based release testing system for characterizing the long-term in vitro behavior of in situ forming implants. The gel-based system consisted of an agarose gel mimicking the subcutaneous injection site and a receiver layer comprising phosphate buffer. Poly(D,L-lactide-co-glycolide) in situ forming implants containing leuprolide acetate as the model peptide and N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO) or triacetin as co-solvent were investigated. The gel-based release testing system discriminated between the formulations. Accelerated release data obtained at elevated temperatures were able to predict real-time release applying the Arrhenius equation. Monitoring of the microenvironmental pH of the implants was performed by UV-Vis imaging in the gel-based system at 50 °C. A pH drop (from pH 7.4 to 6.7 for the NMP and DMSO implants, to pH 5.5 for the triacetin implants) within the first day was observed, followed by an increase to pH âˆ¼7.4. The gel-based system coupled with UV imaging offered opportunity for detailed evaluation and prediction of the in vitro performance of long-acting injectables, facilitating future development of in situ depot forming delivery systems.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Implantes de Medicamentos , Leuprolida , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Triacetina
12.
Anal Bioanal Chem ; 413(26): 6479-6488, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34458946

RESUMEN

In the present study, a method for quantitation of the pharmaceutical peptide oxytocin (OT) and its diselenide-containing analogue (SeOT) in human plasma was developed using gradient elution LC-ICP-MS/MS. Plasma samples were precipitated with acetonitrile containing 1.0% TFA in a volume ratio of 1+3 (sample+precipitation agent) before analysis. Post-column isotope dilution analysis (IDA) was applied for quantitation and was compared with external calibration. Both calibration methods appeared to be fit for purpose regarding figures of merit including linearity, precision, LOD, LOQ and recovery. Analysis of OT and SeOT showed that selenium-based analysis is considerably more sensitive and selective compared to the sulfur-based analysis. Despite the relatively simpler setup of external calibration, IDA can be advantageous because it compensates for instrument drift and changes in organic solvent concentration. The method was applied for a stability study showing the degradation of OT and SeOT in plasma. The degradation of SeOT was faster than the degradation of OT in plasma. Thus, possible stability effects should be considered before replacing a disulfide bridge with a diselenide bridge or introducing a diselenide label in a potential drug.


Asunto(s)
Oxitócicos/sangre , Oxitocina/sangre , Selenio/sangre , Calibración , Cromatografía Liquida/métodos , Humanos , Técnicas de Dilución del Indicador , Límite de Detección , Oxitócicos/análisis , Oxitocina/análogos & derivados , Selenio/análisis , Espectrometría de Masas en Tándem/métodos
13.
Adv Drug Deliv Rev ; 177: 113949, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461199

RESUMEN

UV-vis spectrometry is widely used in the pharmaceutical sciences for compound quantification, alone or in conjunction with separation techniques, due to most drug entities possessing a chromophore absorbing light in the range 190-800 nm. UV dissolution imaging, the scope of this review, generates spatially and temporally resolved absorbance maps by exploiting the UV absorbance of the analyte. This review aims to give an introduction to UV dissolution imaging and its use in the determination of intrinsic dissolution rates and drug release from whole dosage forms. Applications of UV imaging to non-oral formulations have started to emerge and are reviewed together with the possibility of utilizing UV imaging for physical chemical characterisation of drug substances. The benefits of imaging drug diffusion and transport processes are also discussed.


Asunto(s)
Liberación de Fármacos , Rayos Ultravioleta , Formas de Dosificación , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química
14.
J Colloid Interface Sci ; 602: 415-425, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34144300

RESUMEN

Formation of high viscous inverse lyotropic liquid crystalline phases in situ upon exposure of low viscous drug-loaded lipid preformulations to synovial fluid provides a promising approach for design of depot formulations for intra-articular drug delivery. Rational formulation design relies on a fundamental understanding of the synovial fluid-mediated dynamic structural transitions occurring at the administration site. At conditions mimicking the in vivo situation, we investigated in real-time such transitions at multiple positions by synchrotron small-angle X-ray scattering (SAXS) combined with an injection-cell. An injectable diclofenac-loaded quaternary preformulation consisting of 72/8/10/10% (w/w) glycerol monooleate/1,2-dioleoyl-glycero-3-phospho-rac-(1-glycerol)/ethanol/water was injected into hyaluronic acid solution or synovial fluid. A fast generation of a coherent drug depot of inverse bicontinuous Im3m and Pn3m cubic phases was observed. Through construction of 2D spatial maps from measurements performed 60 min after injection of the preformulation, it was possible to differentiate liquid crystalline rich- and excess hyaluronic acid solution- or synovial fluid-rich regimes. Synchrotron SAXS findings confirmed that the exposure of the preformulation to the media leads to alterations in structural features in position- and time-dependent manners. Effects of biologically relevant medium composition on the structural features, and implications for development of formulations with sustained drug release properties are highlighted.


Asunto(s)
Cristales Líquidos , Liberación de Fármacos , Lípidos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
15.
Eur J Pharm Sci ; 163: 105867, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33951482

RESUMEN

Buccal films containing a pH modifying excipient may be able to increase bioavailability of drugs with pH-dependent solubility such as saquinavir. Access to suitable in vitro drug release testing methods may facilitate buccal formulation development. This study aimed to explore two release testing methods for characterising buccal films and to elucidate the relationship between microenvironmental pH (pHM, i.e. the pH around the swelling films) and saquinavir release. The Franz diffusion cell method was applicable to investigate the effect of hydroxypropyl methylcellulose (HPMC) grade on saquinavir release. Films containing HPMC K3 LV had a faster saquinavir release than films containing HPMC K100 LV. A UV/Vis imaging method was developed to visualise saquinavir release and pHM changes during the initial dissolution. Within 5 min, the pHM decreased from 6.8 to around 5.4 for HPMC K100 LV-based films containing 11.1 % or 16.6 % (w/w) malic acid. Subsequently, the pHM increased due to increasing concentrations of saquinavir. An increase in malic acid content led to a faster saquinavir release. The combination of methods may be broadly applicable for excipient screening in development of buccal formulations. The imaging approach holds promise for characterizing other pH modifying formulation principles.


Asunto(s)
Química Farmacéutica , Saquinavir , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Derivados de la Hipromelosa , Solubilidad
16.
Sci Rep ; 11(1): 4754, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637878

RESUMEN

The understanding and characterization of protein interactions is crucial for elucidation of complicated biomolecular processes as well as for the development of new biopharmaceutical therapies. Often, protein interactions involve multiple binding, avidity, oligomerization, and are dependent on the local environment. Current analytical methodologies are unable to provide a detailed mechanistic characterization considering all these parameters, since they often rely on surface immobilization, cannot measure under biorelevant conditions, or do not feature a structurally-related readout for indicating formation of multiple bound species. In this work, we report the use of flow induced dispersion analysis (FIDA) for in-solution characterization of complex protein interactions under in vivo like conditions. FIDA is an immobilization-free ligand binding methodology employing Taylor dispersion analysis for measuring the hydrodynamic radius (size) of biomolecular complexes. Here, the FIDA technology is utilized for a size-based characterization of the interaction between TNF-α and adalimumab. We report concentration-dependent complex sizes, binding affinities (Kd), kinetics, and higher order stoichiometries, thus providing essential information on the TNF-α-adalimumab binding mechanism. Furthermore, it is shown that the avidity stabilized complexes involving formation of multiple non-covalent bonds are formed on a longer timescale than the primary complexes formed in a simple 1 to 1 binding event.


Asunto(s)
Adalimumab/química , Unión Proteica , Factor de Necrosis Tumoral alfa/química , Fenómenos Biofísicos , Hidrodinámica , Cinética
17.
Anal Bioanal Chem ; 413(8): 2247-2255, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33580829

RESUMEN

Nanoparticles (NPs) are increasingly applied in research and development of new therapies. Characterization of NP systems most often include size, shape, size distribution, and charge but information on the chemical stability of NPs and investigation of the presence of dissolved species is most often missing in efficacy studies due to lack of appropriate methods. In this study, a method based on capillary electrophoresis coupled to inductively coupled plasma mass spectrometry (CE-ICP-MS) was established for analysis of selenium (Se) NPs and dissolved Se species in aqueous media. Peak area and migration time precisions (RSD) of 1.4-3.0% and 1.0-2.6%, respectively, were obtained. CE-ICP-MS analysis of a commercially available SeNP suspension (Q-SeNP) revealed large amounts of selenite corresponding to 32% of the total Se content in the suspension, indicating considerable NP degradation upon storage. The CE-ICP-MS method was modified using a coated fused silica capillary in order to analyze SeNPs in human plasma. Peak area and migration time precisions (RSD) in the range of 3.3-10.7% and 0.8-2.8%, respectively, were achieved. Degradation of polyvinyl alcohol (PVA)-coated SeNPs to selenite in human plasma was demonstrated using the modified method. The amounts of SeNP and selenite were estimated based on a correction factor for the ICP-MS signals of PVA-SeNP and dissolved Se. To the best of our knowledge, this is the first study of SeNPs by CE-ICP-MS and highlights the potential of CE-ICP-MS for quantitative characterization of the behavior of SeNPs in biological media.


Asunto(s)
Nanopartículas/análisis , Selenio/sangre , Electroforesis Capilar/métodos , Humanos , Espectrometría de Masas/métodos , Nanopartículas/metabolismo , Selenio/análisis , Selenio/metabolismo
18.
J Pharm Biomed Anal ; 194: 113789, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33298380

RESUMEN

The purpose of this study was to investigate whole-dosage form UV-vis imaging as a potential tool for functional characterization of excipients used in solid oral dosage forms. To this end, tablets (average mass 260.0 mg, 224.5 mg and 222.1 mg) containing theophylline anhydrate (20 % w/w), 1% (w/w) magnesium stearate, and 79 % (w/w) of either microcrystalline cellulose (MCC, Avicel PH 101) or hydroxypropyl methylcellulose (HPMC, Methocel K15 M or K100 M) were prepared as model systems. Drug liberation from tablets was studied in 0.01 M HCl at 37 °C using a Sirius SDi2 equipped with a USP IV type flow cell comprising a UV-vis imaging detector operating at 255 nm and 520 nm. The effluent from the flow cell was passed through a downstream spectrophotometer, and UV-vis spectra in the wavelength range 200-800 nm were recorded every 2 min. The erosion and swelling behavior of the MCC tablets and HPMC K15 M and K100 M tablets were visualized in real time. The swelling of HPMC K15 M and K100 M containing tablets was assessed quantitatively as changes in tablet diameter measured at 520 nm, and was clearly distinguished from the swelling of the MCC tablets. Namely, an increment of 2.5 mm in diameter was determined for the HPMC tablets while the MCC tablets increased by 0.5-1 mm in diameter. Gel layers of variable thickness were observed only for the HPMC K15 M and K100 M tablets. In addition, a relatively high initial liberation rate of theophylline was found for the MCC tablets as compared to the HPMC tablets. UV-vis imaging revealed features of liberation not revealed by simply measuring drug concentration in the dissolution media or by visual assessment. It may be sufficiently sensitive to be further developed for functional characterization of excipients and provide insights into drug-excipient interactions likely to be useful in formulation development.


Asunto(s)
Química Farmacéutica , Excipientes , Preparaciones de Acción Retardada , Liberación de Fármacos , Derivados de la Hipromelosa , Metilcelulosa , Solubilidad , Comprimidos
19.
Mol Pharm ; 17(12): 4522-4532, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33164519

RESUMEN

The initial drug release from in situ forming implants is affected by factors such as the physicochemical properties of the active pharmaceutical ingredient, the type of the excipients utilized, and the surrounding environment. The feasibility of UV-vis imaging for characterization of the initial behavior of poly(d,l-lactide-co-glycolide) (PLGA)/1-methyl-2-pyrrolidinone (NMP) in situ forming implants was investigated. The in vitro release of leuprolide acetate (LA) and implant formation in real time were monitored using dual-wavelength imaging at 280 and 525 nm, respectively, in matrices based on agarose gel and hyaluronic acid (HA) solution emulating the subcutaneous matrix. Three hours upon injection of the pre-formulation, approximately 15% of the total amount of LA administered was found in the agarose gel, while 5% was released from the implant into the HA solution. Concurrently, more extensive swelling of the implants in the HA solution as compared to implants in the agarose gel was observed. Transport of both LA and the solvent NMP was investigated using UV-vis imaging in a small-scale cell where the geometry of the formulation was controlled, showing a linear correlation between drug release and solvent escape. Light microscopy showed that the microstructures of the resulting implants in agarose gel and HA solution were different, which may be attributed to the different solvent exchange rates. UV imaging was also used to examine the interaction of LA with the release medium by characterizing the diffusion of LA in agarose gel, HA solution, and phosphate buffered saline. The reduced LA diffusivity in HA solution as compared to agarose gel and the LA distribution coefficient in the agarose gel-HA system indicated the presence of interactions between LA and HA. Our findings show that the external environment affects the solvent exchange kinetics for in situ forming implants in vitro, resulting in different types of initial release behavior. UV-vis imaging in combination with biorelevant matrices may offer an interesting approach in the development of in situ forming implant delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Implantes de Medicamentos/farmacocinética , Excipientes/química , Leuprolida/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Implantes de Medicamentos/administración & dosificación , Implantes de Medicamentos/química , Liberación de Fármacos , Leuprolida/administración & dosificación , Leuprolida/química , Microscopía Ultravioleta , Imagen Molecular/métodos , Solubilidad
20.
Int J Pharm ; 587: 119662, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32682958

RESUMEN

Co-amorphous systems comprising low-molecular weight drugs and co-formers constitute an interesting approach to optimize pharmaceutical performance of drugs with low aqueous solubility. Within the different types of co-amorphous systems, the combination of a drug with its own salt may be an attractive formulation option due the absence of any inactive co-formers. The aim of this study was to investigate the possibility of forming a co-amorphous system from naproxen (NAP) and its sodium salt (NAP(Na)). Ball milling of NAP and NAP(Na) at equal molar ratio resulted in the formation of a co-amorphous system whilst NAP and NAP(Na) alone were crystalline following both, ball milling and melt quenching. Infrared spectroscopy and physical stability testing revealed that intermolecular interactions were able to maintain the ball milled NAP-NAP(Na) system amorphous for 2 months at 40 °C. Surprisingly, the dissolution rate of co-amorphous NAP-NAP(Na) was only intermediate between those of crystalline NAP and crystalline NAP(Na). In situ Raman spectroscopic measurements indicated an initial phase separation of the co-amorphous form to NAP and NAP(Na) followed by dissociation of sodium from NAP(Na) and crystallization to NAP. These findings contribute to the design of co-amorphous formulations with the combination of a drug and its own salt.


Asunto(s)
Naproxeno , Espectrometría Raman , Cristalización , Estabilidad de Medicamentos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA