Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Pharm ; 661: 124449, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992734

RESUMEN

Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.

2.
J Drug Target ; : 1-12, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38853622

RESUMEN

BACKGROUND: Conventional topical psoriasis treatments suffer from limited delivery to affected areas and skin irritation due to high local drug concentration. PURPOSE: This study aims to prepare hypericin (HYP) loaded nanostructured lipid carriers (NLCs) and their application in psoriasis treatment through intradermal administration using hollow microneedles assisted by photodynamic therapy. METHODS: The colloidal characteristics of NLCs, entrapment efficiency and morphology were evaluated. An ex-vivo skin distribution study was conducted along with testing the in vivo antipsoriatic activity in mice with the imiquimod-induced psoriasis model. RESULTS: The particle size and zeta potential of HYP-NLCs were 167.70 nm and -18.1, respectively. The ex-vivo skin distribution study demonstrated the superior distribution of HYP-NLCs to a depth of 1480 µm within the skin layers relative to only 750 µm for free HYP. In vivo studies revealed that the levels of NF-KB, IL 6, MMP1, GSH, and catalase in the group treated with HYP-NLCs in the presence of light were comparable to the negative control. CONCLUSIONS: The histopathological inspection of dissected skin samples reflected the superiority of HYP-NLCs over HYP ointment. This could be ascribed to the effect of nanoencapsulation on improving HYP properties besides the ability of hollow microneedles to ensure effective HYP delivery to the affected psoriatic area.

3.
Int J Pharm ; 653: 123876, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38331331

RESUMEN

Rheumatoid arthritis (RA) is a joint-destructive autoimmune disease that severely affects joint function. Despite the variability of treatment protocols, all of them are associated with severe side effects that compromise patient compliance. The main aim of the current study is to prepare localized effective RA treatment with reduced side effects by combining nanoencapsulation, photodynamic therapy (PDT) and hollow microneedles (Ho-MNs) to maximize the pharmacological effects of hypericin (HYP). To attain this, HYP-loaded emulsomes (EMLs) were prepared, characterized and administered through intradermal injection using AdminPen™ Ho-MNs combined with PDT in rats with an adjuvant-induced RA model. The prepared EMLs had a spherical shape and particle size was about 93.46 nm with an absolute entrapment efficiency. Moreover, confocal imaging indicated the interesting capability of Ho-MNs to deposit the HYP EMLs to a depth reaching 1560 µm into the subcutaneous tissue. In vivo, study results demonstrated that the group treated with HYP EMLs through Ho-MNs combined with PDT had no significant differences in joint diameter, TNF-α, IL1, HO-1, NRF2 and SD levels compared with the negative control group. Similarly, rats treated with the combination of HYP EMLs, Ho-MNs and PDT showed superior joint healing efficacy compared with the groups treated with HYP EMLs in dark, HYP ointment or HYP in microneedles in histopathological examination. These findings highlight the promising potential of photoactivated HYP EMLs when combined with Ho-MNs technology for RA management. The presented therapeutic EMLs-MNs platform could serve as a powerful game-changer in the development of future localized RA treatments.


Asunto(s)
Artritis Reumatoide , Perileno/análogos & derivados , Fotoquimioterapia , Humanos , Ratas , Animales , Fotoquimioterapia/métodos , Antracenos , Artritis Reumatoide/tratamiento farmacológico , Fármacos Fotosensibilizantes
4.
J Liposome Res ; : 1-13, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856332

RESUMEN

Thermoresponsive drug delivery systems have been used to treat diseases that cause hyperthermia or elevated body tissue temperatures, viz., rheumatoid arthritis and different cancers. The aim of the study was to enhance berberine (BER) release using thermosensitive nanostructured lipid carriers (TNLCs) through intra-articular administration for the management of arthritis. TNLCs were prepared using binary mixtures of stearic acid and decanoic acid as solid and liquid lipids, respectively. Lipid mixtures with an optimum melting point were assessed using differential scanning calorimetry studies. In vitro characterization of the BER TNLCs included particle size, zeta potential, entrapment efficiency, and drug release at 37 °C and 41 °C. Joint diameter measurement, real-time polymerase chain reaction (RT-PC) analysis, enzyme-linked immunosorbent assay (ELISA) for inflammatory markers, and histological evaluation of the dissected joints were all performed in vivo on rats with adjuvant-induced arthritis. In vitro characterization revealed negatively charged BER-loaded TNLCs with a spherical shape, particle size less than 500 nm, BER entrapment efficiency up to 79%, and a high drug release rate at an elevated temperature of 41 °C. In silico studies revealed the affinity of BER to different formula components and to the measured biomarkers. In vivo assessment of the optimum TNLCs showed that BER TNLCs were superior to the BER solution suspension regarding their effect on inflammatory biomarkers, joint diameter, and histological studies.

5.
ACS Omega ; 8(37): 33943-33954, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744837

RESUMEN

Short-wave UVB (ultraviolet B) causes rapid oxidative damage to the skin. Rose water is obtained mainly from the petals of Rosa damascena Mill. (Rosaceae) and used traditionally to hydrate dry skin and reduce signs of aging. This work aimed at evaluating the possible protective potential of the prepared eco-friendly Taif rose oil nanoemulsion (ROSE-NANO) against UVB-induced photoaging in adult male Wistar rats. Taif rose oil (ROSE) was obtained from R. damascene by classical steam distillation and formulated in emulgel (100 mg/g). In addition, the oil was formulated in ROSE-NANO-loaded emulgel (50 and 100 mg/g) to enhance the effect of ROSE. All prepared formulas were tested topically for their potential protective effect in UV-induced skin photoaging. The obtained results demonstrated that application of ROSE-NANO-loaded emulgel resulted in superior antiaging potency over ROSE emulgel based on histological studies as well as biochemical evaluations via amendment in CAT and SOD activities, decreasing the concentration of the inflammatory markers and preventing collagen fragmentation through reduction of MMP-9 content in fibroblasts. Moreover, a significant decrease in mRNA expression of NF-KB, JNK, ERK1/2, and p38 MAPK genes was observed. In conclusion, the current study provides scientific evidence for the traditional use of rose oil in skin aging. Moreover, the NANO formula showed promising efficacy as a skin photoprotector against UV-induced oxidative damage and skin aging.

6.
Int J Pharm ; 644: 123334, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37604364

RESUMEN

Conventional RA treatments required prolonged therapy courses that have been accompanied with numerous side effects impairing the patient's quality of life. Therefore, microneedles combined with nanotechnology emerged as a promising alternative non-invasive, effective and self-administrating treatment option. Hence, the main aim of this study is to reduce the side effects associated with systemic teriflunomide administration through its encapsulation in solid lipid nanoparticles (TER-SLNs) and their administration through transdermal route using AdminPen™ hollow microneedles array in the affected joint area directly. In vitro characterization studies were conducted including particle size, zeta potential, encapsulation efficiency and in vitro drug release. Also, ex vivo insertion properties of AdminPen™ hollow microneedles array was carried out. Besides, in vivo evaluation in rats with antigen induced arthritis model were also conducted by assessment of joint diameter, histopathological examination of the dissected joints and testing the levels of TNF-α, IL1B, IL7, MDA, MMP 3, and NRF2 at the end of the experiment. The selected TER-SLNs formulation was about 155.3 nm with negative surface charge and 96.45 % entrapment efficiency. TER-SLNs had a spherical shape and provided sustained release for nearly 96 h. In vivo results demonstrated that nanoencapsulation along with the use of hollow microneedles had a significant influence in improving TER anti-arthritic effects compared with TER suspension with no significant difference from the negative control group.


Asunto(s)
Artritis Reumatoide , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Ratas , Calidad de Vida , Artritis Reumatoide/tratamiento farmacológico , Administración Cutánea
7.
Pharm Dev Technol ; 28(6): 571-583, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37306671

RESUMEN

The aim was to enhance the dissolution rate and in vivo efficacy of flubendazole against trichinella spiralis. Flubendazole nanocrystals were developed by controlled anti-solvent recrystallization. Saturated flubendazole solution was prepared in DMSO. This was injected into phosphate buffer (pH 7.4) containing Aerosil 200, Poloxamer 407 or sodium lauryl sulphate (SLS) while mixing using paddle mixer. The developed crystals were separated from DMSO/aqueous system by centrifugation. The crystals were characterized using DSC, X-ray diffraction and electron microscopy. The crystals were suspended in Poloxamer 407 solution and dissolution rate was monitored. Optimal formulation was administered to Trichinella spiralis infected mice. Administration protocol attacked the parasite in intestinal, migrating and encysted phases. The crystals were spherical nanosized with formulation employing 0.2% Poloxamer 407 as stabilizer being optimum with size of 743.1 nm. DSC and X-ray supported particle size reduction with partial amorphization. Optimal formulation showed fast dissolution to deliver 83.1% after 5 min. Nanocrystals provided complete eradication of intestinal Trichinella and reduced larval count by 90.27 and 85.76% in migrating and encysted phases compared with marginal effect in case of unprocessed flubendazole. The efficacy was clearer from improved histopathological features of the muscles. The study introduced nano-crystallization for enhanced dissolution and in vivo efficacy of flubendazole.


Asunto(s)
Trichinella spiralis , Ratones , Animales , Solubilidad , Poloxámero , Dimetilsulfóxido
8.
Int J Pharm X ; 5: 100170, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36844895

RESUMEN

Caffeine (CAF) is a challenging natural bioactive compound with proven antiaging efficacy. However, being hydrophilic hampers its permeation through the skin. Our aim is to develop a novel CAF-loaded nano-cosmeceutical tool counteracting skin photoaging via improving CAF skin permeation using a bioactive nanocarrier. Caffeinated hyalurosomes are novel biocompatible antiaging nanoplatforms designed by immobilization of phospholipid vesicles with a hyaluronan polymer. Physicochemical properties of the selected hyalurosomes formulation showed nano-sized vesicles (210.10 ± 1.87 nm), with high zeta potential (-31.30 ± 1.19 mv), and high encapsulation efficiency (84.60 ± 1.05%). In vitro release results showed outstanding sustained release profile from caffeinated hyalurosomes compared to the CAF-loaded in conventional gel over 24 h. The in-vivo study revealed a photoprotective effect of caffeinated hyalurosomes, reflected from the intact and wrinkling-free skin. Results of biochemical analyses of oxidative stress, pro-inflammatory mediators, and anti-wrinkling markers further confirmed the efficacy of the prepared hyalurosomes compared to the CAF conventional gel. Finally, histopathological examination demonstrated normal histological structures of epidermal layers with minimal inflammatory cell infiltrates in the caffeinated hyalurosomes group compared to the positive control group. Conclusively, caffeinated hyalurosomes successfully achieved enhanced CAF loading and penetration into the skin besides the hydration effect of hyaluronan. Consequently, the developed delivery system presents a promising skin protection nano-platforms via the double effects of both hyaluronan and CAF, hence it guards against skin photodamage.

10.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36297313

RESUMEN

The vast socio-economic impact of Alzheimer's disease (AD) has prompted the search for new neuroprotective agents with good tolerability and safety profile. With its outstanding role as antioxidant and anti-inflammatory, alongside its anti-acetylcholinesterase activity, the artichoke can be implemented in a multi-targeted approach in AD therapy. Moreover, artichoke agricultural wastes can represent according to the current United Nations Sustainable Development goals an opportunity to produce medicinally valuable phenolic-rich extracts. In this context, the UPLC-ESI-MS/MS phytochemical characterization of artichoke bracts extract revealed the presence of mono- and di-caffeoylquinic acids and apigenin, luteolin, and kaempferol O-glycosides with remarkable total phenolics and flavonoids contents. A broad antioxidant spectrum was established in vitro. Artichoke-loaded, chitosan-coated, solid lipid nanoparticles (SLNs) were prepared and characterized for their size, zeta potential, morphology, entrapment efficiency, release, and ex vivo permeation and showed suitable colloidal characteristics, a controlled release profile, and promising ex vivo permeation, indicating possibly better physicochemical and biopharmaceutical parameters than free artichoke extract. The anti-Alzheimer potential of the extract and prepared SLNs was assessed in vivo in streptozotocin-induced sporadic Alzheimer mice. A great improvement in cognitive functions and spatial memory recovery, in addition to a marked reduction of the inflammatory biomarker TNF-α, ß-amyloid, and tau protein levels, were observed. Significant neuroprotective efficacy in dentate Gyrus sub-regions was achieved in mice treated with free artichoke extract and to a significantly higher extent with artichoke-loaded SLNs. The results clarify the strong potential of artichoke bracts extract as a botanical anti-AD drug and will contribute to altering the future medicinal outlook of artichoke bracts previously regarded as agro-industrial waste.

11.
Pharmaceutics ; 14(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36297441

RESUMEN

Systemic treatments for rheumatoid arthritis are associated with many side effects. This study aimed to minimize the side effects associated with the systemic administration of leflunomide (LEF) by formulating LEF-loaded emulsomes (EMLs) for intra-articular administration. Additionally, EMLs were loaded with supramagnetic nanoparticles (SPIONs) to enhance joint localization, where a magnet was placed on the joint area after intra-articular administration. Full in vitro characterization, including colloidal characteristics, entrapment efficiency, and in vitro release were conducted besides the in vivo evaluation in rats with adjuvant-induced arthritis. In vivo study included joint diameter measurement, X-ray radiographic analysis, RT-PCR analysis, Western blotting, ELISA for inflammatory markers, and histopathological examination of dissected joints. The particle size and entrapment efficiency of the selected LEF SPION EMLs were 198.2 nm and 83.7%, respectively. The EMLs exhibited sustained release for 24 h. Moreover, in vivo evaluation revealed LEF SPION EMLs to be superior to the LEF suspension, likely due to the increase in LEF solubility by nanoencapsulation that improved the pharmacological effects and the use of SPION that ensured the localization of EMLs in the intra-articular cavity upon administration.

13.
Plants (Basel) ; 11(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35890426

RESUMEN

Bunchosia armeniaca (Cav.) DC (Malpighiaceae) is one of the well-known traditionally used remedies worldwide. This study aims to explore the leaves' metabolome via Quadrupole-Time-of-Flight-Liquid-Chromatography-Mass Spectrometry and to investigate the neuroprotective effect of leaves using lipopolysaccharide (LPS) induced Alzheimer's disease model. Mice were administered LPS (0.25 mg/kg/day; intraperitoneal) as well as methanolic extract (BME), dichloromethane (BDMF), and butanol (BBF) fractions (each 200 mg/kg/day; oral) for one week. BME and BBF improved behavioral activity on the Y maze test, decreased brain content of inflammatory markers such as nuclear factor kappa B and interleukin 1 beta, and prevented the elevation of cytochrome P450 2E1, and glial fibrillary acidic protein compared to the LPS-administered group. Histopathological examination of several brain parts confirmed the neuroprotective effect of the tested extracts. In addition, BBF exhibited higher activity in all tested in vitro antioxidant and acetylcholinesterase inhibition assays. Metabolic profiling offered tentative identification of 88 metabolites, including mainly flavonoids, phenolic acids, and coumarins. Several detected metabolites, such as quercetin, apigenin, baicalin, vitexin, and resveratrol, had previously known neuroprotective effects. The current study highlighted the possible novel potential of B. armeniaca in preventing memory impairment, possibly through its antioxidant effect and inhibition of acetylcholinesterase, inflammatory and oxidative stress mediators.

14.
Sci Rep ; 12(1): 13102, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907916

RESUMEN

A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55-66.13 nm), homogenous distribution (PDI of 0.207-0.249), and negatively charged Zeta potential (- 13.4 to - 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.


Asunto(s)
Nanocápsulas , Rosmarinus , Animales , Antioxidantes/farmacología , Hexanos , Lípidos , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Rosmarinus/química
15.
Int J Pharm ; 623: 121939, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35724825

RESUMEN

Systemic rheumatoid arthritis treatment has been associated with numerous side effects. We attempted to formulate hyaluronic acid (HA)-coated teriflunomide (TER)-loaded nanostructured lipid carriers (NLCs) that can target inflamed rheumatic joints following oral administration. In vitro evaluation including colloidal characteristics, drug release and stability studies were conducted. Also, cytotoxicity studies on THP1 and peripheral blood mononuclear cells besides testing the binding of HA coated TER-NLCs to CD44 receptors were carried out. Furthermore, pharmacokinetics following oral administration, anti-arthritic effects, hepato and nephrotoxicity of NLCs were assessed. Selected NLCs formulation was approximately 284.9 ± 3.8 nm in size with 96.89 ± 0.45% entrapment efficiency and provided a sustained release for 30 days. NLCs showed good stability that was confirmed by TEM examination. Cell culture studies revealed that HA-coated TER- NLCs showed superior cytotoxicity and binding affinity to CD44 receptors compared with TER suspension. In vivo studies demonstrated the superiority of NLCs in increasing TER bioavailability, reducing TNF-α serum levels and improving joint healing that was evidenced in both histopathological and X-ray radiographic examination. This may be attributed to the ability of HA-coated TER-NLCs to target rheumatic joints passively and actively by targeting CD44 receptors that are overexpressed in rheumatic joints.


Asunto(s)
Artritis Reumatoide , Nanoestructuras , Administración Oral , Artritis Reumatoide/tratamiento farmacológico , Crotonatos , Portadores de Fármacos , Humanos , Ácido Hialurónico/uso terapéutico , Hidroxibutiratos , Leucocitos Mononucleares , Lípidos , Nitrilos , Tamaño de la Partícula , Toluidinas
16.
Pharmaceutics ; 14(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35631589

RESUMEN

Preparation and evaluation of a non-invasive intranasal luteolin delivery for the management of cognitive dysfunction in Alzheimer's disease (AD) using novel chitosan decorated nanoparticles. Development of luteolin-loaded chitosomes was followed by full in vitro characterization. In vivo efficacy was evaluated using a sporadic Alzheimer's disease (SAD) animal model via intracerebroventricular injection of 3 mg/kg streptozotocin (ICV-STZ). Treatment groups of luteolin suspension and chitosomes (50 mg/kg) were then intranasally administered after 5 h of ICV-STZ followed by everyday administration for 21 consecutive days. Behavioral, histological, immunohistochemical, and biochemical studies were conducted. Chitosomes yielded promising quality attributes in terms of particle size (PS) (412.8 ± 3.28 nm), polydispersity index (PDI) (0.378 ± 0.07), Zeta potential (ZP) (37.4 ± 2.13 mv), and percentage entrapment efficiency (EE%) (86.6 ± 2.05%). Behavioral findings showed obvious improvement in the acquisition of short-term and long-term spatial memory. Furthermore, histological evaluation revealed an increased neuronal survival rate with a reduction in the number of amyloid plaques. Biochemical results showed improved antioxidant effects and reduced pro-inflammatory mediators' levels. In addition, a suppression by half was observed in the levels of both Aß aggregation and hyperphosphorylated-tau protein in comparison to the model control group which in turn confirmed the capability of luteolin-loaded chitosomes (LUT-CHS) in attenuating the pathological changes of AD. The prepared nanoparticles are considered a promising safe, effective, and non-invasive nanodelivery system that improves cognitive function in SAD albino mice as opposed to luteolin suspension.

17.
Drug Deliv ; 29(1): 1663-1674, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35616281

RESUMEN

Despite the fact of availability of several treatments for breast cancer, most of them fail to attain the desired therapeutic response due to their poor bioavailability, high doses, non-selectivity and as a result systemic toxicity. Here in an attempt made to study the transdermal effect of leflunomide (LEF) against breast cancer. In order to improve the poor physicochemical properties of LEF, it was loaded into cubosomes. Cubosomes were prepared by the emulsification method. Colloidal characteristics of cubosomes including particle size, ζ-potential, entrapment efficiency, in-vitro release profile and ex-vivo permeation were studied. In addition, morphology, stability, cytotoxicity and cell uptake in MDA-MB-231 cell line were carried out for the selected cubosomal formulation. The selected LEF loaded cubosomal formulation showed a small particle size (168 ± 1.08) with narrow size distribution (PI 0.186 ± 0.125) and negative ζ potential (-25.5 ± 0.98). Its Entrapment efficiency (EE%) was 93.2% and showed sustained release profile that extended for 24 h. The selected formulation showed stability when stored at 25 °C for three months in terms of size and EE%. TEM images illustrated the cubic structure of the cubosome. Cell culture results revealed the superiority of LEF cubosomes compared to LEF suspension in their cytotoxic effects with an IC50 close to that of doxorubicin. Furthermore, LEF cell uptake was significantly higher for LEF cubosomes. This may be attributed to the effect of nano-encapsulation on enhancing drug pharmacological effects and uptake indicating the potential usefulness of LEF cubosomes for breast cancer management.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Administración Cutánea , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Leflunamida , Nanopartículas/química , Tamaño de la Partícula
18.
Drug Deliv ; 29(1): 714-727, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35243951

RESUMEN

Curcumin (CU) is a natural polyphenolic phytoingredient. CU has anti-inflammatory, anti-oxidant, and anticancer activities. The poor solubility, bioavailability, and stability of CU diminish its clinical application. Hence, structural modification of CU is highly recommended. The CU analog; 3,5-bis(4-bromobenzylidene)-1-propanoylpiperidin-4-one (PIP) exhibited high stability, safety, and more potent antiproliferative activity against hepatocellular carcinoma. In the present study, nano-bilosomes (BLs) were formulated to augment PIP delivery and enhance its solubility. A 21.31 full factorial design was adopted to prepare the synthesized PIP-loaded BLs. Optimized F4 showed a biphasic release pattern extended over 24 h, with EE%, ZP, and PS of 90.21 ± 1.0%, -27.05 ± 1.08 mV, and 111.68 ± 1.4 nm. PIP-loaded BLs were tested for safety against a non-cancerous cell line (Wi-38) and for anticancer activity against the Huh-7 human hepatocellular carcinoma cells and compared to the standard anticancer drug doxorubicin (Dox). The anticancer selectivity index of PIP-loaded BLs recorded 420.55 against Huh-7 liver cancer cells, markedly higher than a CU suspension (18.959) or the Dox (20.82). The antiproliferative activity of nano-encapsulated PIP was roughly equivalent to Dox. PIP-loaded BLs, showed enhanced drug solubility, and enhanced anticancer effect, with lower toxicity and higher selectivity against Huh-7 liver cancer cells, compared to the parent CU.


Asunto(s)
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Nanopartículas , Disponibilidad Biológica , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Curcumina/química , Curcumina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología
19.
Pharmaceutics ; 14(3)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35335952

RESUMEN

Impaired memory and cognitive function are the main features of Alzheimer's disease (AD). Unfortunately, currently available treatments cannot cure or delay AD progression. Moreover, the blood-brain barrier hampers effective delivery of treatment to the brain. Therefore, we aimed to evaluate the impact of intranasally delivered luteolin on AD using bile-salt-based nano-vesicles (bilosomes). Different bilosomes were prepared using 23-factorial design. The variables were defined by the concentration of surfactant, the molar ratio of cholesterol:phospholipid, and the concentration of bile salt. Results demonstrated optimized luteolin-loaded bilosomes with particle size (153.2 ± 0.98 nm), zeta potential (-42.8 ± 0.24 mV), entrapment efficiency% (70.4 ± 0.77%), and % drug released after 8 h (80.0 ± 1.10%). In vivo experiments were conducted on an AD mouse model via intracerebroventricular injection of 3 mg/kg streptozotocin. We conducted behavioral, biochemical marker, histological, and immune histochemistry assays after administering a luteolin suspension or luteolin bilosomes (50 mg/kg) intranasally for 21 consecutive days. Luteolin bilosomes improved short-term and long-term spatial memory. They also exhibited antioxidant properties and reduced levels of proinflammatory mediators. They also suppressed both amyloid ß aggregation and hyperphosphorylated Tau protein levels in the hippocampus. In conclusion, luteolin bilosomes are an effective, safe, and non-invasive approach with superior cognitive function capabilities compared to luteolin suspension.

20.
J Pharm Sci ; 111(2): 417-431, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34461114

RESUMEN

This work aimed to develop a new efficient approach for safe treatment of psoriasis. To achieve that, resveratrol-loaded spanlastics(F1-F12) were prepared and evaluated by complete in vitro characterization. The two optimal formulations (F10 and F11) had their particle size in the nano range with high entrapment efficiency and sustainable drug release. These two formulae were incorporated in carbopol 934 gel formulations (G1-G8) with different concentrations of drug and carbopol 934 polymer. G1 and G5 (1% w/w Carbopol 934 gel and 0.1% resveratrol) showed 40.13% ± 2.017% and 73.76% ± 2.46%,8 hours drug release, respectively. Their pH was accepted and non-irritant. At a shear stress of 500 s-1, G1 and G5 showed a reasonable viscosity of 1048.5 ± 2.12 cps and 954 ± 2.15 cps, respectively. In the in vivo psoriasis study, mice treated by G5 gel showed significant improvement of erythema and scaling compared to positive control group and they maintained healthy skin as shown in histopathological observations. Moreover, this group showed the least changes in mRNA expression of inflammatory cytokines. Concisely, our results suggest that selected carbopol gel of resveratrol-loaded spanlastics could maximize resveratrol topical anti-psoriatic effect.


Asunto(s)
Psoriasis , Absorción Cutánea , Animales , Liberación de Fármacos , Imiquimod , Ratones , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Resveratrol/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA