Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 52(9): 5002-5015, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38477356

RESUMEN

microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the mutation in ALG-1 and ALG-2 catalytic residues affects overall animal fitness and causes phenotypes reminiscent of miRNA defects only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the slicer residues of ALG-1 and ALG-2 contribute differentially to regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the catalytic tetrad of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicer residues of miRNA-specific Argonautes contribute to maintaining levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.


Asunto(s)
Proteínas Argonautas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Mutación , Proteínas de Unión al ARN
2.
bioRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873419

RESUMEN

Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing of dissected gonads and functional analysis of new loss of function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of 3 individual miRNAs (mir-58.1, mir-83, and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and 5 additional miRNAs (mir-49, mir-57, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mir-58.1, mir-83, mir-235, and mir-4807-4810.1 mutants that may contribute to the reduced number of sperm. Further, analysis of multiple mutants of these miRNAs suggested complex genetic interactions between these miRNAs for sperm production. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.

3.
Genetics ; 217(1): 1-14, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33683352

RESUMEN

Posttranscriptional regulation of gene expression, typically effected by RNA-binding proteins, microRNAs (miRNAs), and translation initiation factors, is essential for normal germ cell function. Numerous miRNAs have been detected in the germline; however, the functions of specific miRNAs remain largely unknown. Functions of miRNAs have been difficult to determine as miRNAs often modestly repress target mRNAs and are suggested to sculpt or fine tune gene expression to allow for the robust expression of cell fates. In Caenorhabditis elegans hermaphrodites, cell fate decisions are made for germline sex determination during larval development when sperm are generated in a short window before the switch to oocyte production. Here, analysis of newly generated mir-44 family mutants has identified a family of miRNAs that modulate the germline sex determination pathway in C. elegans. Mutants with the loss of mir-44 and mir-45 produce fewer sperm, showing both a delay in the specification and formation of sperm as well as an early termination of sperm specification accompanied by a premature switch to oocyte production. mir-44 and mir-45 are necessary for the normal period of fog-1 expression in larval development. Through genetic analysis, we find that mir-44 and mir-45 may act upstream of fbf-1 and fem-3 to promote sperm specification. Our research indicates that the mir-44 family promotes sperm cell fate specification during larval development and identifies an additional posttranscriptional regulator of the germline sex determination pathway.


Asunto(s)
Células Germinativas/metabolismo , MicroARNs/genética , Espermatogénesis , Animales , Caenorhabditis elegans , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Organismos Hermafroditas/genética , Organismos Hermafroditas/crecimiento & desarrollo , MicroARNs/metabolismo , Procesos de Determinación del Sexo
4.
Dev Biol ; 426(1): 115-125, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28461238

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in animal development and physiology, though functions for most miRNAs remain unknown. Worms with reduced miRNA biogenesis due to loss of Drosha or Pasha/DGCR8 activity are sterile and fail to ovulate, indicating that miRNAs are required for the process of oocyte maturation and ovulation. Starting with this penetrant sterile phenotype and using new strains created to perform tissue specific RNAi, we characterized the roles of the C. elegans Pasha, pash-1, and two miRNA-specific Argonautes, alg-1 and alg-2, in somatic gonad cells and in germ cells in the regulation of ovulation. Conditional loss of pash-1 activity resulted in a reduced rate of ovulation and in basal and ovulatory sheath contractions. Similarly, knockdown of miRNA-specific Argonautes in the cells of the somatic gonad by tissue-specific RNAi results in a reduction of the ovulation rate and in basal and ovulatory sheath contractions. Reduced miRNA pathway gene activity resulted in a range of defects, including oocytes that were pinched upon entry of the oocyte into the distal end of the spermatheca in about 42% of the ovulation events observed following alg-1 RNAi. This phenotype was not observed on worms exposed to control RNAi. In contrast, knockdown of alg-1 and alg-2 in germ cells results in few defects in oocyte maturation and ovulation. These data identify specific steps in the process of ovulation that require miRNA pathway gene activity in the somatic gonad cells.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Células Germinativas/citología , Gónadas/citología , MicroARNs/genética , Ovulación/genética , Proteínas de Unión al ARN/genética , Animales , Diferenciación Celular/genética , MicroARNs/metabolismo , Ovulación/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/genética
5.
Curr Biol ; 22(23): 2213-20, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23141108

RESUMEN

BACKGROUND: Rhythmic behaviors are ubiquitous phenomena in animals. In C. elegans, defecation is an ultradian rhythmic behavior: every ∼50 s a calcium wave initiating in the posterior intestinal cells triggers the defecation motor program that comprises three sequential muscle contractions. Oscillatory calcium signaling is central to the periodicity of defecation. The posteriormost intestinal cells function as the pacemaker for this rhythmic behavior, although it is unclear how the supremacy of these cells for calcium-wave initiation is controlled. RESULTS: We describe how the loss of the mir-240/786 microRNA cluster, which results in arrhythmic defecation, causes ectopic intestinal calcium-wave initiation. mir-240/786 expression in the intestine is restricted to the posterior cells that function as the defecation pacemaker. Genetic data indicate that mir-240/786 functions upstream of the inositol 1,4,5-trisphosphate (IP(3)) receptor. Through rescue analysis, it was determined that miR-786 functions to regulate defecation. Furthermore, we identified elo-2, a fatty-acid elongase with a known role in defecation cycling, as a direct target for miR-786. We propose that the regulation of palmitate levels through repression of elo-2 activity is the likely mechanistic link to defecation. CONCLUSIONS: Together, these data indicate that miR-786 confers pacemaker status on posterior intestinal cells for the control of calcium-wave initiation through the regulation of elo-2 and, subsequently, palmitate levels. We propose that a difference in fatty-acid composition in the posterior intestinal cells may alter the activities of membrane proteins, such as IP(3)-receptor or TRPM channels, that control pacemaker activity in the C. elegans intestine.


Asunto(s)
Acetiltransferasas/metabolismo , Relojes Biológicos , Señalización del Calcio , Defecación , MicroARNs/metabolismo , Animales , Caenorhabditis elegans , Calcio/metabolismo , Elongasas de Ácidos Grasos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mucosa Intestinal/metabolismo , Ácidos Palmíticos/metabolismo
6.
PLoS One ; 7(5): e37185, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615936

RESUMEN

The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans.


Asunto(s)
MicroARNs/fisiología , Animales , Caenorhabditis elegans , Regulación del Desarrollo de la Expresión Génica , MicroARNs/biosíntesis , MicroARNs/genética
7.
Curr Biol ; 21(17): R668-71, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21920301

RESUMEN

In the nematode Caenorhabditis elegans, microRNA (miRNA) regulation of development was first observed in the striking abnormalities of lin-4 and let-7 loss of function mutants. However, after these first two miRNA mutant phenotypes were described, progress on the identification of miRNA functions in worms slowed considerably. Recent advances reveal new functions for miRNAs in embryonic and larval development as well as in the regulation of lifespan and stress response. Results from a combination of computational, biochemical, and genetic approaches have deepened our understanding of miRNA regulation of target mRNAs and support the hypothesis that miRNAs have an important role in ensuring the robustness of developmental and physiological pathways.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , MicroARNs/metabolismo , Envejecimiento , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico
8.
Curr Biol ; 20(14): 1321-5, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20579881

RESUMEN

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate the translation and/or stability of their mRNA targets. Previous work showed that for most miRNA genes of C. elegans, single-gene knockouts did not result in detectable mutant phenotypes. This may be due, in part, to functional redundancy between miRNAs. However, in most cases, worms carrying deletions of all members of a miRNA family do not display strong mutant phenotypes. They may function together with unrelated miRNAs or with non-miRNA genes in regulatory networks, possibly to ensure the robustness of developmental mechanisms. To test this, we examined worms lacking individual miRNAs in genetically sensitized backgrounds. These include genetic backgrounds with reduced processing and activity of all miRNAs or with reduced activity of a wide array of regulatory pathways. With these two approaches, we identified mutant phenotypes for 25 out of 31 miRNAs included in this analysis. Our findings describe biological roles for individual miRNAs and suggest that the use of sensitized genetic backgrounds provides an efficient approach for miRNA functional analysis.


Asunto(s)
Caenorhabditis elegans/genética , Redes Reguladoras de Genes/genética , MicroARNs/genética , MicroARNs/fisiología , Fenotipo , Animales , Proteínas Portadoras/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Modelos Genéticos , Mutación/genética , Interferencia de ARN
9.
PLoS Genet ; 3(12): e215, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18085825

RESUMEN

MicroRNAs (miRNAs), a large class of short noncoding RNAs found in many plants and animals, often act to post-transcriptionally inhibit gene expression. We report the generation of deletion mutations in 87 miRNA genes in Caenorhabditis elegans, expanding the number of mutated miRNA genes to 95, or 83% of known C. elegans miRNAs. We find that the majority of miRNAs are not essential for the viability or development of C. elegans, and mutations in most miRNA genes do not result in grossly abnormal phenotypes. These observations are consistent with the hypothesis that there is significant functional redundancy among miRNAs or among gene pathways regulated by miRNAs. This study represents the first comprehensive genetic analysis of miRNA function in any organism and provides a unique, permanent resource for the systematic study of miRNAs.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , MicroARNs/genética , ARN de Helminto/genética , Animales , Secuencia Conservada , Evolución Molecular , Genes de Helminto , Mutación , Fenotipo , Eliminación de Secuencia
10.
Dev Cell ; 9(3): 403-14, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16139228

RESUMEN

The microRNA let-7 is a critical regulator of developmental timing events at the larval-to-adult transition in C. elegans. Recently, microRNAs with sequence similarity to let-7 have been identified. We find that doubly mutant animals lacking the let-7 family microRNA genes mir-48 and mir-84 exhibit retarded molting behavior and retarded adult gene expression in the hypodermis. Triply mutant animals lacking mir-48, mir-84, and mir-241 exhibit repetition of L2-stage events in addition to retarded adult-stage events. mir-48, mir-84, and mir-241 function together to control the L2-to-L3 transition, likely by base pairing to complementary sites in the hbl-1 3' UTR and downregulating hbl-1 activity. Genetic analysis indicates that mir-48, mir-84, and mir-241 specify the timing of the L2-to-L3 transition in parallel to the heterochronic genes lin-28 and lin-46. These results indicate that let-7 family microRNAs function in combination to affect both early and late developmental timing decisions.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Eliminación de Gen , Genotipo , Mutación , Filogenia , Factores de Tiempo
12.
Dev Biol ; 258(2): 464-74, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12798302

RESUMEN

Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Óvulo/enzimología , Animales , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Femenino , Fertilización/fisiología , Fertilización In Vitro , Técnicas In Vitro , Ionomicina/farmacología , Ratones , Óvulo/efectos de los fármacos , Óvulo/fisiología
13.
J Biol Chem ; 277(38): 35061-70, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12121980

RESUMEN

KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, concentration-dependently and reversibly inhibited inositol 1,4,5-trisphosphate receptor (IP(3)R)-mediated [Ca(2+)](i) signaling in mouse eggs and permeabilized A7r5 smooth muscle cells, two cell types predominantly expressing type-1 IP(3)R (IP(3)R-1). KN-92, an inactive analog, was ineffective. The inhibitory action of KN-93 on Ca(2+) signaling depended neither on effects on IP(3) metabolism nor on the filling grade of Ca(2+) stores, suggesting a direct action on the IP(3)R. Inhibition was independent of CaMKII, since in identical conditions other CaMKII inhibitors (KN-62, peptide 281-309, and autocamtide-related inhibitory peptide) were ineffective and since CaMKII activation was precluded in permeabilized cells. Moreover, KN-93 was most effective in the absence of Ca(2+). Analysis of Ca(2+) release in A7r5 cells at varying [IP(3)], of IP(3)R-1 degradation in eggs, and of [(3)H]IP(3) binding in Sf9 microsomes all indicated that KN-93 did not affect IP(3) binding. Comparison of the inhibition of Ca(2+) release and of [(3)H]IP(3) binding by KN-93 and calmodulin (CaM), either separately or combined, was compatible with a specific interaction of KN-93 with a CaM-binding site on IP(3)R-1. This was also consistent with the much smaller effect of KN-93 in permeabilized 16HBE14o(-) cells that predominantly express type 3 IP(3)R, which lacks the high affinity CaM-binding site. These findings indicate that KN-93 inhibits IP(3)R-1 directly and may therefore be a useful tool in the study of IP(3)R functional regulation.


Asunto(s)
Bencilaminas/farmacología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Óvulo/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Activación Enzimática , Femenino , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA