Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Fungal Biol ; 128(6): 1992-2006, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39174235

RESUMEN

The aim of this study is to develop safe biological methods for controlling fungal deterioration of historical manuscripts. Therefore, fifteen fungal isolates were obtained from paper sheets and leather skins of a deteriorated historical manuscript (dated back to the 13th century). Those isolates were identified using both traditional methods and ITS-sequencing analysis. Aspergillus niger accounted for seven strains, Penicillium citrinum for one strain, Aspergillus flavus for three, Aspergillus fumigatus for one, Aspergillus nidulans for one, and Penicillium chrysogenum for two of the fungal strains that were obtained. The ability of fungal strains for the secretion of cellulase, amylase, gelatinase, and pectinase as hydrolytic enzymes was evaluated. The capability of the probiotic-bacterial strain Lactobacillus plantarum DSM 20174 for inhibition of fungal strains that cause severe deterioration was studied using ethyl acetate-extract. The metabolic profile of the ethyl acetate-extract showed the presence of both high- and low-molecular-weight active compounds as revealed by GC-MS analysis. The safe dose to prevent fungal growth was determined by testing the ethyl acetate extract's biocompatibility against Wi38 and HFB4 as normal cell lines. The extract was found to have a concentration-dependent cytotoxic impact on Wi38 and HFB4, with IC50 values of 416 ± 4.5 and 349.7 ± 5.9 µg mL-1, respectively. It was suggested that 100 µg mL-1 as a safe concentration could be used for paper preservation. Whatman filter paper treated with ethyl acetate extract was used to cultivate the fungal strain Penicillium citrinum AX2. According to data analysis, fungal inhibition measurement, SEM, ATR-FT-IR, XRD, color change measurement, and mechanical property assessment, the recommended concentration of ethyl acetate extract was adequate to protect paper inoculated with the highest enzymatic producer fungi, P. citrinum AX2.


Asunto(s)
Lactobacillus plantarum , Probióticos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Penicillium/crecimiento & desarrollo , Penicillium/efectos de los fármacos , Penicillium/aislamiento & purificación , Penicillium/metabolismo , Antibiosis , Humanos , Antifúngicos/farmacología
2.
Biology (Basel) ; 12(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37508454

RESUMEN

The main hypothesis of the present research is investigating the efficacy of titanium oxide nanoparticles (TiO2-NPs) to prevent the growth of fungal strains when applied on leather under an experimental study. Therefore, fifteen fungal strains were isolated from a deteriorated historical manuscript (papers and leathers) and identified by traditional methods and ITS sequence analysis, including Aspergillus chevalieri (one isolate), A. nidulans (two strains), A. flavus (four strains), A. cristatus (one strain), A. niger (one strain), Paecilomyces fulvus (two strains), Penicillium expansum (two strains), and P. citrinum (two strains). The enzymes cellulase, amylase, pectinase, and gelatinase, which play a crucial role in biodegradation, were highly active in these fungal strains. TiO2-NPs were formed using the cell-free filtrate of the probiotic bacterial strain, Lactobacillus plantarum, and characterized. Data showed that the TiO2-NPs were successfully formed with a spherical shape and anatase phase with sizes of 2-8 nm. Moreover, the EDX analysis revealed that the Ti and O ions occupied the main component with weight percentages of 41.66 and 31.76%, respectively. The in vitro cytotoxicity of TiO2-NPs toward two normal cell lines, WI38 and HFB4, showed a low toxicity effect against normal cells (IC50 = 114.1 ± 8.1µg mL-1 for Wi38, and 237.5 ± 3.5µg mL-1 for HFB4). Therefore, concentrations of 100 µg mL-1 were used to load on prepared leather samples before inoculation with fungal strain P. expansum AL1. The experimental study revealed that the loaded TiO2-NPs have the efficacy to inhibit fungal growth with percentages of 73.2 ± 2.5%, 84.2 ± 1.8%, and 88.8 ± 0.6% after 7, 14, and 21 days, respectively. Also, the analyses including SEM, FTIR-ART, color change, and mechanical properties for leather inoculated with fungal strain AL1 in the absence of NPs showed high damage aspects compared to those inoculated with fungal strains in the presence of TiO2-NPs.

3.
Microorganisms ; 11(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37317078

RESUMEN

Herein, twelve fungal strains were isolated from a deteriorated historical manuscript dated back to the 18th century. The obtained fungal strains were identified, using the traditional method and ITS sequence analysis, as Cladosporium herbarum (two strains), Aspergillus fumigatus (five strains), A. ustus (one strain), A. flavus (two strains), A. niger (one strain), and Penicillium chrysogenum (one strain). The ability of these fungal strains to degrade the main components of the paper was investigated by their activity to secrete extracellular enzymes including cellulase, amylase, gelatinase, and pectinase. The cell-free filtrate (CFF) ability of the probiotic bacterial strain Lactobacillus rhamnosus ATCC-7469 to inhibit fungal growth was investigated. The metabolic profile of CFF was detected by GC-MS analysis, which confirmed the low and high molecular weight of various active chemical compounds. The safe dose to be used for the biocontrol of fungal growth was selected by investigating the biocompatibility of CFF and two normal cell lines, Wi38 (normal lung tissue) and HFB4 (normal human skin melanocyte). Data showed that the CFF has a cytotoxic effect against the two normal cell lines at high concentrations, with IC50 values of 525.2 ± 9.8 and 329.1 ± 4.2 µg mL-1 for Wi38 and HFB4, respectively. The antifungal activity showed that the CFF has promising activity against all fungal strains in a concentration-dependent manner. The highest antifungal activity (100%) was recorded for a concentration of 300 µg mL-1 with a zone of inhibition (ZOI) in the ranges of 21.3 ± 0.6 to 17.7 ± 0.5 mm. At a concentration of 100 µg mL-1, the activity of CFF remained effective against all fungal strains (100%), but its effectiveness decreased to only inhibit the growth of eight strains (66%) out of the total at 50 µg mL-1. In general, probiotic bacterial strains containing CFF are safe and can be considered as a potential option for inhibiting the growth of various fungal strains. It is recommended that they be used in the preservation of degraded historical papers.

4.
Life (Basel) ; 12(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36362976

RESUMEN

This study aims to assess the deterioration aspects of a historical manuscript dating back to the 14th century that was deposited in the Library of the Arabic Language Academy, Cairo, Egypt. The study aims at the exploration of the role of various fungal strains that had colonized this deteriorated manuscript in its biodeterioration through their efficacy in the secretion of various hydrolytic enzymes. To evaluate the deterioration, various techniques, including visual inspection, attenuated total reflectance Fourier transform infrared (ATR-FTIR), scanning electron microscopy (SEM), X-Ray diffraction analysis (XRD), color change, and pH value, were utilized. The fungal strains linked to the historical document were isolated, identified, and evaluated for their deterioration activities. The findings demonstrate that the manuscript exhibits a variety of deterioration signs including color change, brittleness and weakness, erosion, and removal of the grain surface pattern in leather binding. According to the ATR-FTIR, the chemical composition of the historical paper and leather underwent some alterations. The historical paper has a lower level of cellulose crystallinity than the control sample. Penicillium chrysogenum (two isolates), P. citrinum (four isolates), Aspergillus ustus (three isolates), A. terreus (two isolates), A. chinensis (one isolate), Paecilomyces sp. (one isolate), and Induratia sp. (one isolate) were among the fourteen fungal strains identified as being associated with the historical manuscript. These fungal strains produced several hydrolytic enzymes with high activity, such as cellulase, amylase, gelatinase, and pectinase, which play a key role in biodegradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA