Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mar Drugs ; 21(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37103390

RESUMEN

The use of chitosan as a flocculant has become a topic of interest over the years due to its positively charged polymer and biodegradable and non-toxic properties. However, most studies only focus on microalgae and wastewater treatment. This study provides crucial insight into the potential of using chitosan as an organic flocculant to harvest lipids and docosahexaenoic acid (DHA-rich Aurantiochytrium sp. SW1 cells by examining the correlation of flocculation parameters (chitosan concentration, molecular weight, medium pH, culture age, and cell density) toward the flocculation efficiency and zeta potential of the cells. A strong correlation between the pH and harvesting efficiency was observed as the pH increased from 3, with the optimal flocculation efficiency of >95% achieved at a chitosan concentration of 0.5 g/L at pH 6 where the zeta potential was almost zero (3.26 mV). The culture age and chitosan molecular weight have no effect on the flocculation efficiency but increasing the cell density decreases the flocculation efficiency. This is the first study to reveal the potential of chitosan to be used as a harvesting alternative for thraustochytrid cells.


Asunto(s)
Quitosano , Microalgas , Quitosano/farmacología , Quitosano/química , Floculación , Biomasa , Polímeros
2.
Gene ; 846: 146850, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044942

RESUMEN

Aurantiochytrium sp., a fungoid marine protist that belongs to Stramenophila has proven its potential in the production of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acids (DHA). In this study, genomic characterisation of a potential producer for commercial production of DHA, Aurantiochytrium sp. SW1 has been carried out via whole genome sequencing analysis. The genome size of this strain is 60.89 Mb, with a total of 11,588 protein-coding genes. Among these, 9,127 genes could be functionally annotated into a total of 7,248 (62.5 %) from UniProt, 6,554 (56.6 %) from KEGG and 8,643 (74.6 %) genes from eggNOG protein database. The highest proportion of genes belongs to the protein family of metabolism were further assigned into 11 metabolic categories. The highest number of genes belonging to lipid metabolism (321 genes) followed by carbohydrate metabolism (290 genes), metabolism of cofactors and vitamins (197 genes) and amino acid metabolism (188 genes). Further analysis into the biosynthetic pathway for DHA showed evidence of all genes involved in PKS (polyketide synthase)-like PUFA synthase pathway and incomplete fatty acid synthase-elongase/desaturase pathway. Analysis of PUFA synthase showed the presence of up to ten tandem acyl carrier protein (ACP) domains which might have contributed to high DHA production in this organism. In addition, a hybrid system incorporating elements of FAS, Type I PKS and Type II PKS systems were found to be involved in the biosynthetic pathways of fatty acids in Aurantiochytrium sp. SW1. This study delivers an important reference for future research to enhance the lipid, especially DHA production in Aurantiochytrium sp, SW1 and establishment of this strain as an oleaginous thraustochytrid model.


Asunto(s)
Ácidos Docosahexaenoicos , Estramenopilos , Proteína Transportadora de Acilo/metabolismo , Aminoácidos/metabolismo , Vías Biosintéticas/genética , Ácidos Docosahexaenoicos/genética , Ácido Graso Desaturasas/genética , Elongasas de Ácidos Grasos , Ácido Graso Sintasas/genética , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Sintasas Poliquetidas/genética , Estramenopilos/genética , Vitaminas
3.
Front Nutr ; 9: 876649, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558745

RESUMEN

Thraustochytrids, such as Aurantiochytrium and Schizochytrium, have been shown as a promising sustainable alternative to fish oil due to its ability to accumulate a high level of docosahexaenoic acid (DHA) from its total fatty acids. However, the low DHA volumetric yield by most of the wild type (WT) strain of thraustochytrids which probably be caused by the low oxidative stress tolerance as well as a limited supply of key precursors for DHA biosynthesis has restricted its application for industrial application. Thus, to enhance the DHA production, we aimed to generate Aurantiochytrium SW1 mutant with high tolerance toward oxidative stress and high glucose-6 phosphate dehydrogenase (G6PDH) activities through strategic plasma mutagenesis coupled with chemical screening. The WT strain (Aurantiochytrium sp. SW1) was initially exposed to plasma radiation and was further challenged with zeocin and polydatin, generating a mutant (YHPM1) with a 30, 65, and 80% higher overall biomass, lipid, and DHA production in comparison with the parental strains, respectively. Further analysis showed that the superior growth, lipid, and DHA biosynthesis of the YHMP1 were attributed not only to the higher G6PDH and enzymes involved in the oxidative defense such as superoxide dismutase (SOD) and catalase (CAT) but also to other key metabolic enzymes involved in lipid biosynthesis. This study provides an effective approach in developing the Aurantiochytrium sp. mutant with superior DHA production capacity that has the potential for industrial applications.

4.
Biomolecules ; 10(5)2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32413958

RESUMEN

In the present study, the impact of eight phytohormones from six different classes on the growth, lipid and docosahexaenoic acid (DHA) biosynthetic capacity of Aurantiochytrium sp. SW1 (SW1) was evaluated. Kinetin (KIN), jasmonic acid (JA) and gibberellic acid (GA) significantly enhanced the growth and DHA production of SW1 by 16%-28% and 66%-84% in comparison to the control, respectively. The synergistic effect of these three phytohormones, evaluated by the response surface methodology (RSM), showed that a combination of 3.6 mg/L GA, 2.0 mg/L KIN and 20.0 mg/L JA further increased the growth and DHA production of SW1 by 16% to 28% and 22% to 36%, respectively, in comparison to the individual supplementation. The synergistic effect of these phytohormones was also shown to be time-dependent, where feeding at 24 h of cultivation led to 15%, 26% and 35% further increments in the biomass, lipid and DHA production in comparison to that of 0 h, respectively. The determination of stress markers, antioxidant enzymes and key enzymes involved in fatty acid biosynthesis aided to elucidate the potential mechanism underlying the improvement of growth and DHA production by SW1 at various times of feeding. Supplementation with the phytohormones at 24 h exhibited the maximum impact on reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as augmented the antioxidants (superoxide dismutase and catalase) and key metabolic enzymes involved in lipogenesis (malic, glucose-6-phosphate dehydrogenase and ATP-citrate lyase) in comparison to the control and other time points. This study signifies the potential application of phytohormones for improving the growth, lipid and DHA production in Aurantiochytrium spp.


Asunto(s)
Ácidos Docosahexaenoicos/biosíntesis , Microalgas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Ciclopentanos/farmacología , Sinergismo Farmacológico , Giberelinas/farmacología , Microbiología Industrial/métodos , Cinetina/farmacología , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Oxilipinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
5.
Biomed Res Int ; 2018: 3428437, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30246019

RESUMEN

The potential health benefits of probiotics have long been elucidated since Metchnikoff and his coworkers postulated the association of probiotic consumption on human's health and longevity. Since then, many scientific findings and research have further established the correlation of probiotic and gut-associated diseases such as irritable bowel disease and chronic and antibiotic-associated diarrhea. However, the beneficial impact of probiotic is not limited to the gut-associated diseases alone, but also in different acute and chronic infectious diseases. This is due to the fact that probiotics are able to modify the intestinal microbial ecosystem, enhance the gut barrier function, provide competitive adherence to the mucosa and epithelium, produce antimicrobial substances, and modulate the immune activity by enhancing the innate and adaptive immune response. Nevertheless, the current literature with respect to the association of probiotic and cancer, high serum cholesterol, and allergic and HIV diseases are still scarce and controversial. Therefore, in the present work, we reviewed the potential preventive and therapeutic role of probiotics for cancer, high serum cholesterol, and allergic and HIV diseases as well as providing its possible mechanism of actions.


Asunto(s)
Infecciones por VIH , Hipercolesterolemia , Hipersensibilidad , Neoplasias , Probióticos , Colesterol , Infecciones por VIH/prevención & control , Infecciones por VIH/terapia , Humanos , Hipercolesterolemia/prevención & control , Hipercolesterolemia/terapia , Hipersensibilidad/prevención & control , Hipersensibilidad/terapia , Intestinos , Neoplasias/prevención & control , Neoplasias/terapia
6.
ScientificWorldJournal ; 2015: 696521, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26078996

RESUMEN

PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300 °C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS). The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm-424 nm and 426 nm-464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente/métodos , Escherichia coli/química , Escherichia coli/fisiología , Hierro/química , Nanocompuestos/química , Plata/química , Espectroscopía Dieléctrica , Técnicas Electroquímicas , Difracción de Rayos X
7.
Biomed Res Int ; 2014: 831783, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147817

RESUMEN

The biosynthesis of biomedical products including lipid and gamma-linolenic acid (GLA) by Cunninghamella bainieri 2A1 was studied in repeated batch fermentation. Three key process variables, namely, glucose concentration, ammonium tartrate concentration, and harvesting time, were optimized using response surface methodology. Repeated batch fermentation was carried out by the cultivation of Cunninghamella bainieri 2A1 in nitrogen-limited medium with various nitrogen concentration (1-4 g/L) and glucose concentration (20-40 g/L) at three time intervals (12 h, 24 h, and 48 h). Experimental results showed that the highest lipid concentration of 6.2 g/L and the highest GLA concentration of 0.4 g/L were obtained in optimum conditions, where 20.2 g/L glucose, 2.12 g/L ammonium tartrate, and 48 h harvesting time were utilized. Statistical results showed that the interaction between glucose and ammonium tartrate concentration had highly significant effects on lipid and GLA biosynthesis (P < 0.01). Moreover, harvesting time had a significant interaction effect with glucose and ammonium tartrate concentration on lipid production (P < 0.05).


Asunto(s)
Cunninghamella/metabolismo , Fermentación/fisiología , Lípidos/biosíntesis , Ácido gammalinolénico/biosíntesis , Reactores Biológicos/microbiología , Biotecnología/métodos , Medios de Cultivo , Glucosa/metabolismo , Nitrógeno/metabolismo , Tartratos/metabolismo , Ácido gammalinolénico/metabolismo
8.
ScientificWorldJournal ; 2014: 395754, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24672315

RESUMEN

The production of biobutanol was studied by the cultivation of Clostridium acetobutylicum NCIMB 13557 in P2 medium including date fruit as the sole substrate. The effect of P2 medium and the effect of different concentrations of date fruit ranging from 10 to 100 g/L on biobutanol production were investigated. Anaerobic batch culture was carried out at 35 °C incubation temperature and pH 7.0 ± 0.2 for 72 h. Experimental results showed that the lowest yield of biobutanol and acetone-butanol-ethanol (ABE) was 0.32 and 0.35 gram per gram of carbohydrate consumed (g/g), respectively, when an initial date fruit concentration of 10 g/L was utilized. At this fruit date concentration a biobutanol production value of 1.56 g/L was obtained. On the other hand, the maximum yield of biobutanol (0.48 g/g) and ABE (0.63 g/g) was produced at 50 g/L date fruit concentration with a biobutanol production value as high as 11 g/L. However, when a higher initial date fruit concentration was used, biobutanol and ABE production decreased to reach the yield of 0.22 g/g and 0.35 g/g, respectively, where 100 g/L date fruit was used. Similar results also revealed that 10.03 g/L biobutanol was produced using 100 g/L date fruit.


Asunto(s)
Butanoles/metabolismo , Carbono/metabolismo , Clostridium acetobutylicum/metabolismo , Phoeniceae/metabolismo , Medios de Cultivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA