Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Heliyon ; 10(16): e36313, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253167

RESUMEN

The aim of this systematic review and meta-analysis is to evaluate the performance of classification metrics of machine learning-driven radiomics in diagnosing hepatocellular carcinoma (HCC). Following the PRISMA guidelines, a comprehensive search was conducted across three major scientific databases-PubMed, ScienceDirect, and Scopus-from 2018 to 2022. The search yielded a total of 436 articles pertinent to the application of machine learning and deep learning for HCC prediction. These studies collectively reflect the burgeoning interest and rapid advancements in employing artificial intelligence (AI)-driven radiomics for enhanced HCC diagnostic capabilities. After the screening process, 34 of these articles were chosen for the study. The area under curve (AUC), accuracy, specificity, and sensitivity of the proposed and basic models were assessed in each of the studies. Jamovi (version 1.1.9.0) was utilised to carry out a meta-analysis of 12 cohort studies to evaluate the classification accuracy rate. The risk of bias was estimated, and Logistic Regression was found to be the most suitable classifier for binary problems, with least absolute shrinkage and selection operator (LASSO) as the feature selector. The pooled proportion for HCC prediction classification was high for all performance metrics, with an AUC value of 0.86 (95 % CI: 0.83-0.88), accuracy of 0.83 (95 % CI: 0.78-0.88), sensitivity of 0.80 (95 % CI: 0.75-0.84) and specificity of 0.84 (95 % CI: 0.80-0.88). The performance of feature selectors, classifiers, and input features in detecting HCC and related factors was evaluated and it was observed that radiomics features extracted from medical images were adequate for AI to accurately distinguish the condition. HCC based radiomics has favourable predictive performance especially with addition of clinical features that may serve as tool that support clinical decision-making.

2.
Curr Med Imaging ; 20: e15734056282004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616750

RESUMEN

BACKGROUND: PET scan stands as a valuable diagnostic tool in nuclear medicine, enabling the observation of metabolic and physiological changes at a molecular level. However, PET scans have a number of drawbacks, such as poor spatial resolution, noisy images, scattered radiation, artifacts, and radiation exposure. These challenges demonstrate the need for optimization in image processing techniques. OBJECTIVES: Our objective is to identify the evolving trends and impacts of publication in this field, as well as the most productive and influential countries, institutions, authors, themes, and articles. METHODS: A bibliometric study was conducted using a comprehensive query string such as "positron emission tomography" AND "image processing" AND optimization to retrieve 1,783 publications from 1981 to 2022 found in the Scopus database related to this field of study. RESULTS: The findings revealed that the most influential country, institution, and authors are from the USA, and the most prevalent theme is TOF PET image reconstruction. CONCLUSION: The increasing trend in publication in the field of optimization of image processing in PET scans would address the challenges in PET scan by reducing radiation exposure, faster scanning speed, as well as enhancing lesion identification.


Asunto(s)
Bibliometría , Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Cureus ; 16(1): e52132, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38347995

RESUMEN

The diffusion-weighted imaging (DWI) technique is known for its capability to differentiate the diffusion of water molecules between cancerous and non-cancerous cervix tissues, which enhances the accuracy of detection. Despite the potential of DWI-MRI, its accuracy is limited by technical factors influencing in vivo data acquisition, thus impacting the quantification of radiomics features. This study aimed to measure the radiomics stability of manual and semi-automated segmentation on contrast limited adaptive histogram equalization (CLAHE)-enhanced DWI-MRI cervical images. Eighty diffusion-weighted MRI images were obtained from patients diagnosed with cervical cancer, and an active contour model was used to analyze the data. Radiomics analysis was conducted to extract the first statistical order, shape, and textural features with intraclass correlation coefficient (ICC) measurement. The results of the CLAHE segmentation approach showed a marked improvement when compared to the manual and semi-automated segmentation methods, with an ICC value of 0.990 ± 0.005 (p<0.05), compared to 0.864 ± 0.033 (p<0.05) and 0.554 ± 0.185 (p>0.05), respectively. The CLAHE segmentation displayed a higher level of robustness than the manual groups in terms of the features present in both categories. Thus, CLAHE segmentation is owing to its potential to generate radiomics features that are more durable and consistent.

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570515

RESUMEN

The effects of graphene addition on the phase formation and superconducting properties of (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) ceramics synthesized using the co-precipitation method were systematically investigated. Series samples of Bi-2223 were added with different weight percentages (x = 0.0, 0.3, 0.5 and 1.0 wt.%) of graphene nanoparticles. The samples' phase formations and crystal structures were characterized via X-ray diffraction (XRD), while the superconducting critical temperatures, Tc, were investigated using alternating current susceptibility (ACS). The XRD showed that a high-Tc phase, Bi-2223, and a small low-Tc phase, Bi-2212, dominated the samples. The volume fraction of the Bi-2223 phase increased for the sample with x = 0.3 wt.% and 0.5 wt.% of graphene and slightly reduced at x = 1.0 wt.%. The ACS showed that the onset critical temperature, Tc-onset, phase lock-in temperature, Tcj, and coupling peak temperature, TP, decreased when graphene was added to the samples. The susceptibility-temperature (χ'-T) and (χ″-T) curves of each sample, where χ' and χ″ are the real and imaginary parts of the susceptibility, respectively, were obtained. The critical temperature of the pure sample was also measured.

5.
Appl Radiat Isot ; 192: 110525, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36436228

RESUMEN

This study compares the mean glandular dose (MGD) across 2D, 3D projection and Contrast-Enhanced Digital Mammography (CEDM) mammographic techniques. The important metadata were extracted from the digital mammography console. 650 subjects were clustered based on projections, age and CBT. The MGD of 2D, 3D, and CEDM was positively correlated with CBT but inversely correlated with the age factor. This study indicate MGD of CEDM was 16% and 22% lower compared to 2D and 3D techniques, respectively.


Asunto(s)
Neoplasias de la Mama , Intensificación de Imagen Radiográfica , Humanos , Femenino , Intensificación de Imagen Radiográfica/métodos , Mama/diagnóstico por imagen , Mamografía/métodos , Neoplasias de la Mama/diagnóstico por imagen , Dosis de Radiación
6.
Curr Med Imaging ; 19(10): 1105-1113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35975862

RESUMEN

BACKGROUND: For almost three decades, computed tomography (CT) has been extensively used in medical diagnosis, which led researchers to conduct linking of CT dose exposure with image quality. METHODS: In this study, a systematic review and a meta-analysis study were conducted on CT phantom for resolution study especially based on the low contrast detectability (LCD). Furthermore, the association between the CT parameter such as tube voltage and the type of reconstruction algorithm, the amount of phantom scanning affecting the image quality and the exposure dose were also investigated in this study. We utilize PubMed, ScienceDirect, Google Scholar and Scopus databases to search related published articles from the year 2011 until 2020. The notable keywords comprise "computed tomography", "CT phantom", and "low contrast detectability". Of 52 articles, 20 articles are within the inclusion criteria in this systematic review. RESULTS: The dichotomous outcomes were chosen to represent the results in terms of risk ratio as per meta-analysis study. Notably, the noise in iterative reconstruction (IR) reduced by 24%, 33% and 36% with the use of smooth, medium and sharp filters, respectively. Furthermore, adaptive iterative dose reduction (AIDR 3D) improved image quality and the visibility of smaller less dense objects compared to filtered back-projection. Most of the researchers used 120 kVp tube voltage to scan phantom for quality assurance study. CONCLUSION: Hence, optimizing primary factors such as tube potential reduces the dose exposure significantly, and the optimized IR technique could substantially reduce the radiation dose while maintaining the image quality.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
7.
Diagnostics (Basel) ; 14(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201317

RESUMEN

As the total volume of mammograms in Dubai is increasing consistently, it is crucial to focus on the process of dose optimization by determining dose reference levels for such sensitive radiographic examinations as mammography. This work aimed to determine local diagnostic reference levels (DRLs) for mammography procedures in Dubai at different ranges of breast thickness. A total of 2599 anonymized mammograms were randomly retrieved from a central dose survey database. Mammographic cases for screening women aged from 40 to 69 years were included, while cases of breast implants and breast thickness outside the range of 20-100 mm were excluded. Mean, median, and 75 percentiles were obtained for the mean glandular dose (MGD) distribution of each mammography projection for all compressed breast thickness (CBT) ranges. The local DRLs for mammography in Dubai were found to be between 0.80 mGy and 0.82 mGy for the craniocaudal (CC) projection and between 0.89 mGy and 0.971.8 mGy for the mediolateral oblique (MLO) projection. Local DRLs were proposed according to different breast thicknesses, starting from 20 to 100 mm. All groups of CBT showed a slight difference in MGD values, with higher values in MLO views rather than CC views. The local DRLs in this study were lower than some other Middle Eastern countries and lower than the standard reference levels reported by the International Atomic Energy Agency (IAEA) at 3 mGy/view.

8.
Healthcare (Basel) ; 10(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36292364

RESUMEN

A set of national diagnostic reference levels (DRLs) was established in Malaysia for a range of breast thicknesses in 2013, but no updates for full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT). Due to the increasing number of DBTs used and concern over radiation exposure, this study aimed to explore and establish local diagnostic reference levels for FFDM and DBT in Malaysia health facilities at different compressed breast thickness (CBT) ranges. The CBT, kilovoltage peak (kVp), Entrance surface dose (ESD), and average glandular dose (AGD) were retrospectively extracted from the mammography Digital Imaging and Communications in Medicine (DICOM) header. The 75th and 95th percentile values were obtained for the AGD distribution of each mammography projection for three sets of CBT range. The difference in AGD values between FFDM and DBT at three CBT ranges was determined. The DRLs for FFDM were 1.13 mGy, 1.52 mGy, and 2.87 mGy, while DBT were 1.18 mGy, 1.88 mGy, and 2.78 mGy at CBT ranges of 20−39 mm, 40−59 mm, and 60−99 mm, respectively. The AGD of DBT was significantly higher than FFDM for both mammographic views (p < 0.005). All three CBT groups showed a significant difference in AGD values for FFDM and DBT (p < 0.005). The local DRLs from this study were lower than the national DRLs, with the AGD of FFDM significantly lower than DBT.

9.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160523

RESUMEN

Medical imaging phantoms are considered critical in mimicking the properties of human tissue for calibration, training, surgical planning, and simulation purposes. Hence, the stability and accuracy of the imaging phantom play a significant role in diagnostic imaging. This study aimed to evaluate the influence of hydrogen silicone (HS) and water (H2O) on the compression strength, radiation attenuation properties, and computed tomography (CT) number of the blended Polydimethylsiloxane (PDMS) samples, and to verify the best material to simulate kidney tissue. Four samples with different compositions were studied, including samples S1, S2, S3, and S4, which consisted of PDMS 100%, HS/PDMS 20:80, H2O/PDMS 20:80, and HS/H2O/PDMS 20:40:40, respectively. The stability of the samples was assessed using compression testing, and the attenuation properties of sample S2 were evaluated. The effective atomic number of S2 showed a similar pattern to the human kidney tissue at 1.50 × 10-1 to 1 MeV. With the use of a 120 kVp X-ray beam, the CT number quantified for S2, as well measured 40 HU, and had the highest contrast-to-noise ratio (CNR) value. Therefore, the S2 sample formulation exhibited the potential to mimic the human kidney, as it has a similar dynamic and is higher in terms of stability as a medical phantom.

10.
Diagnostics (Basel) ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34573915

RESUMEN

Hepatocellular carcinoma (HCC) is considered as a complex liver disease and ranked as the eighth-highest mortality rate with a prevalence of 2.4% in Malaysia. Magnetic resonance imaging (MRI) has been acknowledged for its advantages, a gold technique for diagnosing HCC, and yet the false-negative diagnosis from the examinations is inevitable. In this study, 30 MR images from patients diagnosed with HCC is used to evaluate the robustness of semi-automatic segmentation using the flood fill algorithm for quantitative features extraction. The relevant features were extracted from the segmented MR images of HCC. Four types of features extraction were used for this study, which are tumour intensity, shape feature, textural feature and wavelet feature. A total of 662 radiomic features were extracted from manual and semi-automatic segmentation and compared using intra-class relation coefficient (ICC). Radiomic features extracted using semi-automatic segmentation utilized flood filling algorithm from 3D-slicer had significantly higher reproducibility (average ICC = 0.952 ± 0.009, p < 0.05) compared with features extracted from manual segmentation (average ICC = 0.897 ± 0.011, p > 0.05). Moreover, features extracted from semi-automatic segmentation were more robust compared to manual segmentation. This study shows that semi-automatic segmentation from 3D-Slicer is a better alternative to the manual segmentation, as they can produce more robust and reproducible radiomic features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA