Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Ecol Evol ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39406932

RESUMEN

The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems.

2.
Sci Data ; 11(1): 476, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724536

RESUMEN

Estimating growing stock is one of the main objectives of forest inventories. It refers to the stem volume of individual trees which is typically derived by models as it cannot be easily measured directly. These models are thus based on measurable tree dimensions and their parameterization depends on the available empirical data. Historically, such data were collected by measurements of tree stem sizes, which is very time- and cost-intensive. Here, we present an exceptionally large dataset with section-wise stem measurements on 40'349 felled individual trees collected on plots of the Experimental Forest Management project. It is a revised and expanded version of previously unpublished data and contains the empirically derived coarse (diameter ≥7 cm) and fine branch volume of 27'297 and 18'980, respectively, individual trees. The data were collected between 1888 and 1974 across Switzerland covering a large topographic gradient and a diverse species range and can thus support estimations and verification of volume functions also outside Switzerland including the derivation of whole tree volume in a consistent manner.


Asunto(s)
Árboles , Suiza , Tallos de la Planta/anatomía & histología , Bosques
3.
Nature ; 624(7990): 92-101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957399

RESUMEN

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Biodiversidad , Carbono/análisis , Carbono/metabolismo , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Actividades Humanas , Restauración y Remediación Ambiental/tendencias , Desarrollo Sostenible/tendencias , Calentamiento Global/prevención & control
4.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37872262

RESUMEN

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Asunto(s)
Ecosistema , Árboles , Humanos , Árboles/metabolismo , Bosques , Hojas de la Planta/metabolismo , Hábitos , Carbono/metabolismo
6.
Nature ; 621(7980): 773-781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612513

RESUMEN

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Asunto(s)
Biodiversidad , Ambiente , Especies Introducidas , Árboles , Bases de Datos Factuales , Actividades Humanas , Especies Introducidas/estadística & datos numéricos , Especies Introducidas/tendencias , Filogenia , Lluvia , Temperatura , Árboles/clasificación , Árboles/fisiología
7.
Commun Biol ; 6(1): 47, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639596

RESUMEN

Previous attempts to quantify tree abundance at global scale have largely neglected the role of local competition in modulating the influence of climate and soils on tree density. Here, we evaluated whether mean tree size in the world's natural forests alters the effect of global productivity on tree density. In doing so, we gathered a vast set of forest inventories including >3000 sampling plots from 23 well-conserved areas worldwide to encompass (as much as possible) the main forest biomes on Earth. We evidence that latitudinal productivity patterns of tree density become evident as large trees become dominant. Global estimates of tree abundance should, therefore, consider dependencies of latitudinal sources of variability on local biotic influences to avoid underestimating the number of trees on Earth and to properly evaluate the functional and social consequences.


Asunto(s)
Bosques , Árboles , Ecosistema , Clima , Cambio Climático
8.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941205

RESUMEN

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Asunto(s)
Biodiversidad , Bosques , Suelo , Árboles
9.
Nat Commun ; 11(1): 5635, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159062

RESUMEN

More tree species can increase the carbon storage capacity of forests (here referred to as the more species hypothesis) through increased tree productivity and tree abundance resulting from complementarity, but they can also be the consequence of increased tree abundance through increased available energy (more individuals hypothesis). To test these two contrasting hypotheses, we analyse the most plausible pathways in the richness-abundance relationship and its stability along global climatic gradients. We show that positive effect of species richness on tree abundance only prevails in eight of the twenty-three forest regions considered in this study. In the other forest regions, any benefit from having more species is just as likely (9 regions) or even less likely (6 regions) than the effects of having more individuals. We demonstrate that diversity effects prevail in the most productive environments, and abundance effects become dominant towards the most limiting conditions. These findings can contribute to refining cost-effective mitigation strategies based on fostering carbon storage through increased tree diversity. Specifically, in less productive environments, mitigation measures should promote abundance of locally adapted and stress tolerant tree species instead of increasing species richness.


Asunto(s)
Clima , Ecosistema , Árboles/crecimiento & desarrollo , Biodiversidad , Carbono/metabolismo , Bosques , Árboles/clasificación , Árboles/metabolismo
10.
J Vis ; 18(11): 8, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30347095

RESUMEN

The temporal relation of competing visual stimuli may determine the corresponding oculomotor response. In this study we systematically varied the temporal coincidence of two conflicting stimuli and investigated saccades that were elicited from such stimuli. We varied the time of presentation of two identical spatially separated stimuli between 0 and +165 ms and measured the amplitude of the saccade elicited by these stimuli using infrared eye tracking. In the first experiment, all stimuli were shown for 36 ms only. In the second experiment, stimuli remained on the screen until the subsequent stimulus appeared, whereas in the third experiment all stimuli were removed after saccade onset. Up to an interstimulus interval of 82 ms, we found a significant shift of the saccadic endpoint toward the location of the second stimulus as compared to saccades toward the first stimulus alone. The strongest saccadic bias was observed if a stimulus was shown 36 ms after or before another stimulus. In contrast, time intervals longer than 82 ms elicited saccade adaptation-that is, the saccadic landing point gradually moved toward the second location over time. In more than 99% of trials, the second stimulus appeared before the saccade reached its endpoint. The timing of a conflicting stimulus determines the associated saccadic response: Simultaneous presentation of two stimuli results in a saccadic endpoint at an averaged intermediate position, short interstimulus intervals result in a strong shift of the saccadic endpoint toward the location of the second of two consecutive stimuli, and longer interstimulus intervals elicit saccade adaptation. The timing of two stimuli thus is associated with distinct processes, which complement each other in order to provide an optimal oculomotor response.


Asunto(s)
Movimientos Sacádicos/fisiología , Campos Visuales/fisiología , Percepción Visual/fisiología , Adaptación Fisiológica , Adulto , Femenino , Humanos , Masculino , Estimulación Luminosa , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA