Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 14(1): 10798, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734777

RESUMEN

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos , Durapatita , Nanocompuestos , Silicatos , Durapatita/química , Nanocompuestos/química , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Silicatos/química , Materiales Biocompatibles/química , Compuestos de Calcio/química , Liberación de Fármacos , Dexametasona/química , Dexametasona/farmacología , Polímeros/química , Humanos , Difracción de Rayos X , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Animales
2.
Int J Biol Macromol ; 152: 633-644, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32112845

RESUMEN

In this study, improvement of urea and creatinine permeability of polyethersulfone (PES) membrane by coating with synthesized tripolyphosphate-crosslinked chitosan (TPP-CS) has been conducted. Original and modified membranes, e.g. pristine PES, polyethersulfone-polyethylene glycol (PES-PEG) and PES-PEG/TPP-CS membranes were characterized using FTIR, DTG, SEM, AFM, water uptake, contact angles, porosity measurement, tensile strength test and permeation tests against urea and creatinine. The results show that the PES modification by TPP-CS coating has been successfully carried out. The water uptake ability, hydrophilicity and porosity of the modified membranes increase significantly to a greater degree. All modified membranes have good thermal stability and tensile strength and their permeation ability towards urea and creatinine increase with the increasing concentration of TPP-CS. PES membrane has urea clearance ability of 7.36 mg/dL and creatinine of 0.014 mg/dL; membrane PES-PEG shows urea clearance of 11.87 mg/dL and creatinine of 0.32 mg/dL; while PES-PEG/TPP-CS membrane gives urea clearance of 20.87-36.40 mg/dL and creatinine in the range of 0.52-0.78 mg/dL. These results suggest that the PES-PEG membrane coated with TPP-CS is superior and can be used as potential material for hemodialysis membrane.


Asunto(s)
Quitosano/análogos & derivados , Quitosano/química , Polietilenglicoles/química , Polímeros/química , Polifosfatos/química , Sulfonas/química , Interacciones Hidrofóbicas e Hidrofílicas , Membranas/química , Membranas Artificiales , Permeabilidad
3.
Mater Sci Eng C Mater Biol Appl ; 99: 491-504, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889724

RESUMEN

Polyurethane (PU) with three different functional groups: carboxyl, hydroxyl and sulphonyl group on its molecular structure were synthesised in this work. The synthesised material suppresses blood clotting and exhibits anticoagulant characteristics due to the presence of the important anionic groups. The synthesised PU was blended with polyethersulphone (PES) and fabricated into flat-sheet membrane to study the physico-chemical and biocompatibility properties of the PES membrane for blood purification application. PES-PU flat-sheet membranes were fabricated via the dry-wet phase separation technique. Different loading of PU (0, 1, 2, 3, 4, and 5%) blended with PES was studied and compared. Based on the in-vitro biocompatibility analysis of the membrane, it can be suggested that the membrane incorporated with PU has better anticoagulant properties compared to the pristine PES membrane. PU incorporation prolonged the clotting time, decreased the formation of thrombin, decreased soluble complement component 3a (C3a) generation and suppressed platelet adhesion and aggregation. The anionic groups on the membrane surface might bind to coagulation factors (antithrombin) and the calcium ions, Ca2+ and thus improve anticoagulant ability. Based on both physico-chemical and in-vitro studied, 4% loading of PU is the optimum loading for incorporation with PES membrane. These results suggested that the blended PES-PU membranes with good haemocompatibility allowed practical application in the field of blood purification.


Asunto(s)
Células Sanguíneas/citología , Separación Celular/métodos , Membranas Artificiales , Polímeros/síntesis química , Poliuretanos/síntesis química , Sulfonas/síntesis química , Coagulación Sanguínea , Activación de Complemento , Complemento C3a/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Adhesividad Plaquetaria , Polímeros/química , Poliuretanos/química , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier , Sulfonas/química , Propiedades de Superficie , Temperatura , Trombosis/patología
4.
Carbohydr Polym ; 201: 257-263, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241818

RESUMEN

Portable dialysis is a need to implement daily and nocturnal hemodialysis. To realize portable dialysis, a dialysate regeneration system comprising superior adsorbents is required to regenerate the used dialysate. This study aims to develop a nano-adsorbent, derived from corn starch for urea removal. Oxidized starch nanoparticles (oxy-SNPs) were prepared via liquid phase oxidation, followed by chemical dissolution and non-solvent precipitation. The oxy-SNPs possessed Z-average size of 177.7 nm with carbonyl and carboxyl contents of 0.068 and 0.048 per 100 glucose units, respectively. The urea adsorption achieved the equilibrium after 4 h with 95% removal. The adsorption mechanism fitted Langmuir isotherm while the adsorption kinetics obeyed pseudo-second-order model. This new material has a maximum adsorption capacity of 185.2 mg/g with a rate constant of 0.04 g/mg.h. Moreover, the oxy-SNPs exhibited the urea uptake recovery of 91.6%. Oxy-SNPs can become a promising adsorbent for dialysate regeneration system to remove urea.

5.
Mater Sci Eng C Mater Biol Appl ; 77: 572-582, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28532067

RESUMEN

A novel approach in the design of a safe, high performance hemodialysis membrane is of great demand. Despite many advantages, the employment of prodigious nanomaterials in hemodialysis membrane is often restricted by their potential threat to health. Hence, this work focusses on designing a biocompatible polyethersulfone (PES) hemodialysis membrane embedded with poly (citric acid)-grafted-multi walled carbon nanotubes (PCA-g-MWCNTs). Two important elements which could assure the safety of the nanocomposite membrane, i.e. (i) dispersion stability and (ii) leaching of MWCNTs were observed. The results showed the improved dispersion stability of MWCNTs in water and organic solvent due to the enriched ratio of oxygen-rich groups which subsequently enhanced membrane separation features. It was revealed that only 0.17% of MWCNTs was leached out during the membrane fabrication process (phase inversion) while no leaching was detected during permeation. In terms of biocompatibility, PES/PCA-g-MWCNT nanocomposite membrane exhibited lesser C3 and C5 activation (189.13 and 5.29ng/mL) and proteins adsorption (bovine serum albumin=4.5µg/cm2, fibrinogen=15.95µg/cm2) as compared to the neat PES membrane, while keeping a normal blood coagulation time. Hence, the PES/PCA-g-MWCNT nanocomposite membrane is proven to have the prospect of becoming a safe and high performance hemodialysis membrane.


Asunto(s)
Nanotubos de Carbono , Polímeros , Diálisis Renal , Sulfonas
6.
Mater Sci Eng C Mater Biol Appl ; 68: 540-550, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27524052

RESUMEN

Poly (citric acid)-grafted-MWCNT (PCA-g-MWCNT) was incorporated as nanofiller in polyethersulfone (PES) to produce hemodialysis mixed matrix membrane (MMM). Citric acid monohydrate was polymerized onto the surface of MWCNTs by polycondensation. Neat PES membrane and PES/MWCNTs MMMs were fabricated by dry-wet spinning technique. The membranes were characterized in terms of morphology, pure water flux (PWF) and bovine serum albumin (BSA) protein rejection. The grafting yield of PCA onto MWCNTs was calculated as 149.2%. The decrease of contact angle from 77.56° to 56.06° for PES/PCA-g-MWCNTs membrane indicated the increase in surface hydrophilicity, which rendered positive impacts on the PWF and BSA rejection of the membrane. The PWF increased from 15.8Lm(-2)h(-1) to 95.36Lm(-2)h(-1) upon the incorporation of PCA-g-MWCNTs due to the attachment of abundant hydrophilic groups that present on the MWCNTs, which have improved the affinity of membrane towards the water molecules. For protein rejection, the PES/PCA-g-MWCNTs MMM rejected 95.2% of BSA whereas neat PES membrane demonstrated protein rejection of 90.2%. Compared to commercial PES hemodialysis membrane, the PES/PCA-g-MWCNTs MMMs showed less flux decline behavior and better PWF recovery ratio, suggesting that the membrane antifouling performance was improved. The incorporation of PCA-g-MWCNTs enhanced the separation features and antifouling capabilities of the PES membrane for hemodialysis application.


Asunto(s)
Membranas Artificiales , Nanotubos de Carbono/química , Polímeros/química , Diálisis Renal , Sulfonas/química , Animales , Bovinos , Humanos , Albúmina Sérica Bovina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA