Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genome Biol ; 24(1): 160, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415181

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are abundant noncoding RNAs best known for their involvement in ribosomal RNA maturation. In mammals, most expressed snoRNAs are embedded in introns of longer genes and produced through transcription and splicing of their host. Intronic snoRNAs were long viewed as inert passengers with little effect on host expression. However, a recent study reported a snoRNA influencing the splicing and ultimate output of its host gene. Overall, the general contribution of intronic snoRNAs to host expression remains unclear. RESULTS: Computational analysis of large-scale human RNA-RNA interaction datasets indicates that 30% of detected snoRNAs interact with their host transcripts. Many snoRNA-host duplexes are located near alternatively spliced exons and display high sequence conservation suggesting a possible role in splicing regulation. The study of the model SNORD2-EIF4A2 duplex indicates that the snoRNA interaction with the host intronic sequence conceals the branch point leading to decreased inclusion of the adjacent alternative exon. Extended SNORD2 sequence containing the interacting intronic region accumulates in sequencing datasets in a cell-type-specific manner. Antisense oligonucleotides and mutations that disrupt the formation of the snoRNA-intron structure promote the splicing of the alternative exon, shifting the EIF4A2 transcript ratio away from nonsense-mediated decay. CONCLUSIONS: Many snoRNAs form RNA duplexes near alternative exons of their host transcripts, placing them in optimal positions to control host output as shown for the SNORD2-EIF4A2 model system. Overall, our study supports a more widespread role for intronic snoRNAs in the regulation of their host transcript maturation.


Asunto(s)
Empalme del ARN , ARN Nucleolar Pequeño , Animales , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Intrones , Emparejamiento Base , ARN no Traducido/metabolismo , Mamíferos/genética
2.
Nucleic Acids Res ; 51(D1): D291-D296, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36165892

RESUMEN

snoDB is an interactive database of human small nucleolar RNAs (snoRNAs) that includes up-to-date information on snoRNA features, genomic location, conservation, host gene, snoRNA-RNA targets and snoRNA abundance and provides links to other resources. In the second edition of this database (snoDB 2.0), we added an entirely new section on ribosomal RNA (rRNA) chemical modifications guided by snoRNAs with easy navigation between the different rRNA versions used in the literature and experimentally measured levels of modification. We also included new layers of information, including snoRNA motifs, secondary structure prediction, snoRNA-protein interactions, copy annotations and low structure bias expression data in a wide panel of tissues and cell lines to bolster functional probing of snoRNA biology. Version 2.0 features updated identifiers, more links to external resources and duplicate entry resolution. As a result, snoDB 2.0, which is freely available at https://bioinfo-scottgroup.med.usherbrooke.ca/snoDB/, represents a one-stop shop for snoRNA features, rRNA modification targets, functional impact and potential regulators.


Asunto(s)
Bases de Datos Genéticas , ARN Nucleolar Pequeño , Humanos , Genómica , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo
3.
Nat Commun ; 13(1): 7332, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443289

RESUMEN

Nascent pre-tRNAs are transcribed by RNA polymerase III and immediately bound by La proteins on the UUU-3'OH sequence, using a tandem arrangement of the La motif and an adjacent RNA recognition motif-1 (RRM1), resulting in protection from 3'-exonucleases and promotion of pre-tRNA folding. The Tetrahymena thermophila protein Mlp1 has been previously classified as a genuine La protein, despite the predicted absence of the RRM1. We find that Mlp1 functions as a La protein through binding of pre-tRNAs, and affects pre-tRNA processing in Tetrahymena thermophila and when expressed in fission yeast. However, unlike in other examined eukaryotes, depletion of Mlp1 results in 3'-trailer stabilization. The 3'-trailers in Tetrahymena thermophila are uniquely short relative to other examined eukaryotes, and 5'-leaders have evolved to disfavour pre-tRNA leader/trailer pairing. Our data indicate that this variant Mlp1 architecture is linked to an altered, novel mechanism of tRNA processing in Tetrahymena thermophila.


Asunto(s)
Schizosaccharomyces , Tetrahymena thermophila , Tetrahymena thermophila/genética , Precursores del ARN , Procesamiento Postranscripcional del ARN , Autoantígeno Ku , Motivo de Reconocimiento de ARN , Eucariontes
4.
Nat Commun ; 13(1): 4938, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999447

RESUMEN

Ribosomes are often seen as monolithic machines produced from uniformly regulated genes. However, in yeast most ribosomal proteins come from duplicated genes. Here, we demonstrate that gene duplication may serve as a stress-adaptation mechanism modulating the global proteome through the differential expression of ribosomal protein paralogs. Our data indicate that the yeast paralog pair of the ribosomal protein L7/uL30 produces two differentially acetylated proteins. Under normal conditions most ribosomes incorporate the hypo-acetylated major form favoring the translation of genes with short open reading frames. Exposure to drugs, on the other hand, increases the production of ribosomes carrying the hyper-acetylated minor paralog that increases translation of long open reading frames. Many of these paralog-dependent genes encode cell wall proteins that could promote tolerance to drugs as their translation increases after exposure to drugs. Together our data suggest a mechanism of translation control that functions through a differential use of near-identical ribosomal protein isoforms.


Asunto(s)
Proteínas Ribosómicas , Saccharomyces cerevisiae , Resistencia a Medicamentos , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 50(11): 6067-6083, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35657102

RESUMEN

Box C/D small nucleolar RNAs (snoRNAs) are a conserved class of RNA known for their role in guiding ribosomal RNA 2'-O-ribose methylation. Recently, C/D snoRNAs were also implicated in regulating the expression of non-ribosomal genes through different modes of binding. Large scale RNA-RNA interaction datasets detect many snoRNAs binding messenger RNA, but are limited by specific experimental conditions. To enable a more comprehensive study of C/D snoRNA interactions, we created snoGloBe, a human C/D snoRNA interaction predictor based on a gradient boosting classifier. SnoGloBe considers the target type, position and sequence of the interactions, enabling it to outperform existing predictors. Interestingly, for specific snoRNAs, snoGloBe identifies strong enrichment of interactions near gene expression regulatory elements including splice sites. Abundance and splicing of predicted targets were altered upon the knockdown of their associated snoRNA. Strikingly, the predicted snoRNA interactions often overlap with the binding sites of functionally related RNA binding proteins, reinforcing their role in gene expression regulation. SnoGloBe is also an excellent tool for discovering viral RNA targets, as shown by its capacity to identify snoRNAs targeting the heavily methylated SARS-CoV-2 RNA. Overall, snoGloBe is capable of identifying experimentally validated binding sites and predicting novel sites with shared regulatory function.


Asunto(s)
ARN Nucleolar Pequeño , Programas Informáticos , Secuencia de Bases , Humanos , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo , ARN Viral , SARS-CoV-2
6.
BMC Bioinformatics ; 23(1): 250, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751026

RESUMEN

BACKGROUND: Alternative splicing can increase the diversity of gene functions by generating multiple isoforms with different sequences and functions. However, the extent to which splicing events have functional consequences remains unclear and predicting the impact of splicing events on protein activity is limited to gene-specific analysis. RESULTS: To accelerate the identification of functionally relevant alternative splicing events we created SAPFIR, a predictor of protein features associated with alternative splicing events. This webserver tool uses InterProScan to predict protein features such as functional domains, motifs and sites in the human and mouse genomes and link them to alternative splicing events. Alternative protein features are displayed as functions of the transcripts and splice sites. SAPFIR could be used to analyze proteins generated from a single gene or a group of genes and can directly identify alternative protein features in large sequence data sets. The accuracy and utility of SAPFIR was validated by its ability to rediscover previously validated alternative protein domains. In addition, our de novo analysis of public datasets using SAPFIR indicated that only a small portion of alternative protein domains was conserved between human and mouse, and that in human, genes involved in nervous system process, regulation of DNA-templated transcription and aging are more likely to produce isoforms missing functional domains due to alternative splicing. CONCLUSION: Overall SAPFIR represents a new tool for the rapid identification of functional alternative splicing events and enables the identification of cellular functions affected by a defined splicing program. SAPFIR is freely available at https://bioinfo-scottgroup.med.usherbrooke.ca/sapfir/ , a website implemented in Python, with all major browsers supported. The source code is available at https://github.com/DelongZHOU/SAPFIR .


Asunto(s)
Empalme Alternativo , Empalme del ARN , Animales , Genoma , Ratones , Isoformas de Proteínas/genética , Programas Informáticos
7.
NAR Cancer ; 4(1): zcab050, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35047824

RESUMEN

Small nucleolar RNAs (snoRNAs) are an omnipresent class of non-coding RNAs involved in the modification and processing of ribosomal RNA (rRNA). As snoRNAs are required for ribosome production, the increase of which is a hallmark of cancer development, their expression would be expected to increase in proliferating cancer cells. However, assessing the nature and extent of snoRNAs' contribution to cancer biology has been largely limited by difficulties in detecting highly structured RNA. In this study, we used a dedicated midsize non-coding RNA (mncRNA) sensitive sequencing technique to accurately survey the snoRNA abundance in independently verified high-grade serous ovarian carcinoma (HGSC) and serous borderline tumour (SBT) tissues. The results identified SNORA81, SNORA19 and SNORA56 as an H/ACA snoRNA signature capable of discriminating between independent sets of HGSC, SBT and normal tissues. The expression of the signature SNORA81 correlates with the level of ribosomal RNA (rRNA) modification and its knockdown inhibits 28S rRNA pseudouridylation and accumulation leading to reduced cell proliferation and migration. Together our data indicate that specific subsets of H/ACA snoRNAs may promote tumour aggressiveness by inducing rRNA modification and synthesis.

8.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36614170

RESUMEN

Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family that infects a large range of mammals, including humans. Recently, studies have shown that MRV alters cellular alternative splicing (AS) during viral infection. The structural protein µ2 appears to be the main determinant of these AS modifications by decreasing the levels of U5 core components EFTUD2, PRPF8, and SNRNP200 during infection. In the present study, we investigated the mechanism by which µ2 exerts this effect on the U5 components. Our results revealed that µ2 has no impact on steady-state mRNA levels, RNA export, and protein stability of these U5 snRNP proteins. However, polysome profiling and metabolic labeling of newly synthesized proteins revealed that µ2 exerts an inhibitory effect on global translation. Moreover, we showed that µ2 mutants unable to accumulate in the nucleus retain most of the ability to reduce PRPF8 protein levels, indicating that the effect of µ2 on U5 snRNP components mainly occurs in the cytoplasm. Finally, co-expression experiments demonstrated that µ2 suppresses the expression of U5 snRNP proteins in a dose-dependent manner, and that the expression of specific U5 snRNP core components have different sensitivities to µ2's presence. Altogether, these results suggest a novel mechanism by which the µ2 protein reduces the levels of U5 core components through translation inhibition, allowing this viral protein to alter cellular AS during infection.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U5 , Empalmosomas , Empalme Alternativo , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Empalme del ARN , ARN Mensajero/genética , Empalmosomas/metabolismo , Proteínas Virales/metabolismo
9.
Nucleic Acids Res ; 49(14): 8370-8383, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34244793

RESUMEN

RBFOX2 controls the splicing of a large number of transcripts implicated in cell differentiation and development. Parsing RNA-binding protein datasets, we uncover that RBFOX2 can interact with hnRNPC, hnRNPM and SRSF1 to regulate splicing of a broad range of splicing events using different sequence motifs and binding modes. Using immunoprecipitation, specific RBP knockdown, RNA-seq and splice-sensitive PCR, we show that RBFOX2 can target splice sites using three binding configurations: single, multiple or secondary modes. In the single binding mode RBFOX2 is recruited to its target splice sites through a single canonical binding motif, while in the multiple binding mode RBFOX2 binding sites include the adjacent binding of at least one other RNA binding protein partner. Finally, in the secondary binding mode RBFOX2 likely does not bind the RNA directly but is recruited to splice sites lacking its canonical binding motif through the binding of one of its protein partners. These dynamic modes bind distinct sets of transcripts at different positions and distances relative to alternative splice sites explaining the heterogeneity of RBFOX2 targets and splicing outcomes.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo M/genética , Factores de Empalme de ARN/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Empalme Alternativo/genética , Sitios de Unión , Humanos , ARN/genética , Sitios de Empalme de ARN/genética
10.
Genome Biol ; 22(1): 172, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088344

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs required for ribosomal RNA modification, implying a ubiquitous tissue distribution linked to ribosome synthesis. However, increasing numbers of studies identify extra-ribosomal roles of snoRNAs in modulating gene expression, suggesting more complex snoRNA abundance patterns. Therefore, there is a great need for mapping the snoRNome in different human tissues as the blueprint for snoRNA functions. RESULTS: We used a low structure bias RNA-Seq approach to accurately quantify snoRNAs and compare them to the entire transcriptome in seven healthy human tissues (breast, ovary, prostate, testis, skeletal muscle, liver, and brain). We identify 475 expressed snoRNAs categorized in two abundance classes that differ significantly in their function, conservation level, and correlation with their host gene: 390 snoRNAs are uniformly expressed and 85 are enriched in the brain or reproductive tissues. Most tissue-enriched snoRNAs are embedded in lncRNAs and display strong correlation of abundance with them, whereas uniformly expressed snoRNAs are mostly embedded in protein-coding host genes and are mainly non- or anticorrelated with them. Fifty-nine percent of the non-correlated or anticorrelated protein-coding host gene/snoRNA pairs feature dual-initiation promoters, compared to only 16% of the correlated non-coding host gene/snoRNA pairs. CONCLUSIONS: Our results demonstrate that snoRNAs are not a single homogeneous group of housekeeping genes but include highly regulated tissue-enriched RNAs. Indeed, our work indicates that the architecture of snoRNA host genes varies to uncouple the host and snoRNA expressions in order to meet the different snoRNA abundance levels and functional needs of human tissues.


Asunto(s)
Anotación de Secuencia Molecular , Especificidad de Órganos/genética , ARN Nucleolar Pequeño/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Intrones/genética , Masculino , Modelos Genéticos , ARN Nucleolar Pequeño/genética , Iniciación de la Transcripción Genética
11.
Wiley Interdiscip Rev RNA ; 12(3): e1632, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33038057

RESUMEN

Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome-producing program and the second is a gene-specific feature responsible for fine-tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre-mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine-tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under: Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Estabilidad del ARN , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
12.
Nucleic Acids Res ; 48(4): 1954-1968, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31863578

RESUMEN

In Saccharomyces cerevisiae, most ribosomal proteins are synthesized from duplicated genes, increasing the potential for ribosome heterogeneity. However, the contribution of these duplicated genes to ribosome production and the mechanism determining their relative expression remain unclear. Here we demonstrate that in most cases, one of the two gene copies generate the bulk of the active ribosomes under normal growth conditions, while the other copy is favored only under stress. To understand the origin of these differences in paralog expression and their contribution to ribosome heterogeneity we used RNA polymerase II ChIP-Seq, RNA-seq, polyribosome association and peptide-based mass-spectrometry to compare their transcription potential, splicing, mRNA abundance, translation potential, protein abundance and incorporation into ribosomes. In normal conditions a post-transcriptional expression hierarchy of the duplicated ribosomal protein genes is the product of the efficient splicing, high stability and efficient translation of the major paralog mRNA. Exposure of the cell to stress modifies the expression ratio of the paralogs by repressing the expression of the major paralog and thus increasing the number of ribosomes carrying the minor paralog. Together the data indicate that duplicated ribosomal protein genes underlie a modular network permitting the modification of ribosome composition in response to changing growth conditions.


Asunto(s)
Regulación de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Polirribosomas/genética , ARN Polimerasa II/genética , Empalme del ARN/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
13.
Trends Genet ; 35(12): 923-934, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31668856

RESUMEN

Introns are ubiquitous in eukaryotic transcripts. They are often viewed as junk RNA but the huge energetic burden of transcribing, removing, and degrading them suggests a significant evolutionary advantage. Ostensibly, an intron functions within the host pre-mRNA to regulate its splicing, transport, and degradation. However, recent studies have revealed an entirely new class of trans-acting functions where the presence of intronic RNA in the cell impacts the expression of other genes in trans. Here, we review possible new mechanisms of intron functions, with a focus on the role of yeast introns in regulating the cell growth response to starvation.


Asunto(s)
Genoma , Genómica , Intrones , Animales , Células Eucariotas/metabolismo , Evolución Molecular , Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Humanos , Precursores del ARN , Empalme del ARN , Estabilidad del ARN , Levaduras/genética
14.
Commun Biol ; 2: 211, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31240249

RESUMEN

Cell cycle progression depends on phase-specific gene expression. Here we show that the nuclear RNA degradation machinery plays a lead role in promoting cell cycle-dependent gene expression by triggering promoter-dependent co-transcriptional RNA degradation. Single molecule quantification of RNA abundance in different phases of the cell cycle indicates that relative curtailment of gene expression in certain phases is attained even when transcription is not completely inhibited. When nuclear ribonucleases are deleted, transcription of the Saccharomyces cerevisiae G1-specific axial budding gene AXL2 is detected throughout the cell cycle and its phase-specific expression is lost. Promoter replacement abolished cell cycle-dependent RNA degradation and rendered the RNA insensitive to the deletion of nuclear ribonucleases. Together the data reveal a model of gene regulation whereby RNA abundance is controlled by promoter-dependent induction of RNA degradation.


Asunto(s)
Ciclo Celular , Regiones Promotoras Genéticas , ARN Nuclear/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Glicoproteínas de Membrana/genética , ARN Mensajero/metabolismo , Ribonucleasa III/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Factor de Transcripción TFIIA/genética
15.
Bioinformatics ; 35(23): 5039-5047, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31141144

RESUMEN

MOTIVATION: Next-generation sequencing techniques revolutionized the study of RNA expression by permitting whole transcriptome analysis. However, sequencing reads generated from nested and multi-copy genes are often either misassigned or discarded, which greatly reduces both quantification accuracy and gene coverage. RESULTS: Here we present count corrector (CoCo), a read assignment pipeline that takes into account the multitude of overlapping and repetitive genes in the transcriptome of higher eukaryotes. CoCo uses a modified annotation file that highlights nested genes and proportionally distributes multimapped reads between repeated sequences. CoCo salvages over 15% of discarded aligned RNA-seq reads and significantly changes the abundance estimates for both coding and non-coding RNA as validated by PCR and bedgraph comparisons. AVAILABILITY AND IMPLEMENTATION: The CoCo software is an open source package written in Python and available from http://gitlabscottgroup.med.usherbrooke.ca/scott-group/coco. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
RNA-Seq , Secuenciación de Nucleótidos de Alto Rendimiento , Genes Anidados , Análisis de Secuencia de ARN , Programas Informáticos , Transcriptoma
16.
Wiley Interdiscip Rev RNA ; 10(4): e1530, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843375

RESUMEN

Noncoding RNA plays an important role in all aspects of the cellular life cycle, from the very basic process of protein synthesis to specialized roles in cell development and differentiation. However, many noncoding RNAs remain uncharacterized and the function of most of them remains unknown. Mid-size noncoding RNAs (mncRNAs), which range in length from 50 to 400 nucleotides, have diverse regulatory functions but share many fundamental characteristics. Most mncRNAs are produced from independent promoters although others are produced from the introns of other genes. Many are found in multiple copies in genomes. mncRNAs are highly structured and carry many posttranscriptional modifications. Both of these facets dictate their RNA-binding protein partners and ultimately their function. mncRNAs have already been implicated in translation, catalysis, as guides for RNA modification, as spliceosome components and regulatory RNA. However, recent studies are adding new mncRNA functions including regulation of gene expression and alternative splicing. In this review, we describe the different classes, characteristics and emerging functions of mncRNAs and their relative expression patterns. Finally, we provide a portrait of the challenges facing their detection and annotation in databases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.


Asunto(s)
Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Células Procariotas/metabolismo , ARN no Traducido/metabolismo , Evolución Molecular
17.
Nature ; 565(7741): 612-617, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651641

RESUMEN

Introns are ubiquitous features of all eukaryotic cells. Introns need to be removed from nascent messenger RNA through the process of splicing to produce functional proteins. Here we show that the physical presence of introns in the genome promotes cell survival under starvation conditions. A systematic deletion set of all known introns in budding yeast genes indicates that, in most cases, cells with an intron deletion are impaired when nutrients are depleted. This effect of introns on growth is not linked to the expression of the host gene, and was reproduced even when translation of the host mRNA was blocked. Transcriptomic and genetic analyses indicate that introns promote resistance to starvation by enhancing the repression of ribosomal protein genes that are downstream of the nutrient-sensing TORC1 and PKA pathways. Our results reveal functions of introns that may help to explain their evolutionary preservation in genes, and uncover regulatory mechanisms of cell adaptations to starvation.


Asunto(s)
Intrones/genética , Viabilidad Microbiana/genética , Nutrientes/deficiencia , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5'/genética , Respiración de la Célula , Medios de Cultivo/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Privación de Alimentos , Regulación Fúngica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Eliminación de Secuencia/genética , Transducción de Señal , Transcriptoma/genética
18.
Wiley Interdiscip Rev RNA ; 10(3): e1521, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30548404

RESUMEN

The double-stranded RNA-binding protein (dsRBP) family controls RNA editing, stability, and function in all eukaryotes. The central feature of this family is the recognition of a generic RNA duplex using highly conserved double-stranded RNA-binding domain (dsRBD) that recognizes the characteristic distance between the minor grooves created by the RNA helix. Variations on this theme that confer species and functional specificities have been reported but most dsRBPs retain their capacity to bind generic dsRNA. The ribonuclease III (RNase III) family members fall into four classes, represented by bacterial RNase III, yeast Rnt1p, human Drosha, and human Dicer, respectively. Like all dsRBPs and most members of the RNase III family, Rnt1p has a dsRBD, but unlike most of its kin, it poorly binds to generic RNA helices. Instead, Rnt1p, the only known RNase III expressed in Saccharomyces cerevisiae that lacks the RNAi (RNA interference) machinery, recognizes a specific class of stem-loop structures. To recognize the specific substrates, the dsRBD of Rnt1p is specialized, featuring a αßßßααα topology and a sequence-specific RNA-binding motif at the C-terminus. Since the discovery of Rnt1p in 1996, significant progress has been made in studies of its genetics, function, structure, and mechanism of action, explaining the reasons and mechanisms for the increased specificity of this enzyme and its impact on the mechanism of RNA degradation. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Asunto(s)
Interferencia de ARN , Estabilidad del ARN , ARN Bicatenario/metabolismo , ARN de Hongos/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Unión Proteica , Conformación Proteica , Ribonucleasa III/genética , Proteínas de Saccharomyces cerevisiae/genética , Sensibilidad y Especificidad
19.
RNA ; 24(7): 950-965, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29703781

RESUMEN

Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. Structured noncoding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing.


Asunto(s)
ARN no Traducido/metabolismo , Transcriptoma , Línea Celular Tumoral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas/genética , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/metabolismo , ARN de Transferencia/metabolismo , ADN Polimerasa Dirigida por ARN , Ribonucleoproteínas/metabolismo , Análisis de Secuencia de ARN
20.
Nucleic Acids Res ; 44(16): 7911-21, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27257067

RESUMEN

Members of the ribonuclease III (RNase III) family regulate gene expression by triggering the degradation of double stranded RNA (dsRNA). Hundreds of RNase III cleavage targets have been identified and their impact on RNA maturation and stability is now established. However, the mechanism defining substrates' reactivity remains unclear. In this study, we developed a real-time FRET assay for the detection of dsRNA degradation by yeast RNase III (Rnt1p) and characterized the kinetic bottlenecks controlling the reactivity of different substrates. Surprisingly, the results indicate that Rnt1p cleavage reaction is not only limited by the rate of catalysis but can also depend on base-pairing of product termini. Cleavage products terminating with paired nucleotides, like the degradation signals found in coding mRNA sequence, were less reactive and more prone to inhibition than products having unpaired nucleotides found in non-coding RNA substrates. Mutational analysis of U5 snRNA and Mig2 mRNA confirms the pairing of the cleavage site as a major determinant for the difference between cleavage rates of coding and non-coding RNA. Together the data indicate that the base-pairing of Rnt1p substrates encodes reactivity determinants that permit both constitutive processing of non-coding RNA while limiting the rate of mRNA degradation.


Asunto(s)
Biocatálisis , Ribonucleasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Emparejamiento Base/genética , Secuencia de Bases , Fluorescencia , Genes Reporteros , Cinética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA