Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mycologia ; 116(3): 449-463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38484286

RESUMEN

Proteomics has been used extensively in the field of mycology, mainly in trying to understand the complex network of protein-protein interactions that has been implicated in the molecular functions of fungi. It is also a useful tool to compare metabolic differences within a genus. Species of Pseudogymnoascus, a genus under the phyla Ascomycota, have been shown to play an important role in the soil environment. They have been found in both polar and temperate regions and are a known producer of many extracellular hydrolases that contribute to soil decomposition. Despite the apparent importance of Pseudogymnoascus spp. in the soil ecosystem, investigations into their molecular functions are still very limited. In the present study, proteomic characterization of six Pseudogymnoascus spp. isolated from three biogeographic regions (the Arctic, Antarctic, and temperate regions) was carried out using tandem mass spectrometry. Prior to proteomic analysis, the optimization for protein extraction was carried out. Trichloroacetic acid­acetone­phenol was found to be the best extraction method to be used for proteomic profiling of Pseudogymnoascus spp. The proteomic analysis identified 2003 proteins that were successfully mapped to the UniProtKB database. The identified proteins were clustered according to their biological processes and molecular functions. The shared proteins found in all Pseudogymnoascus spp. (1201 proteins) showed a significantly close relationship in their basic cellular functions, despite differences in morphological structures. Analysis of Pseudogymnoascus spp. proteome also identified proteins that were unique to each region. However, a high number of these proteins belonged to protein families of similar molecular functions, namely, transferases and hydrolases. Our proteomic data can be used as a reference for Pseudogymnoascus spp. across different global regions and a foundation for future soil ecosystem function research.


Asunto(s)
Ascomicetos , Proteínas Fúngicas , Proteómica , Microbiología del Suelo , Ascomicetos/clasificación , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/química , Ascomicetos/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteoma , Espectrometría de Masas en Tándem , Regiones Árticas
2.
Microb Ecol ; 87(1): 11, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060022

RESUMEN

In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.


Asunto(s)
Ascomicetos , Respuesta al Choque por Frío , Proteómica , Microbiología del Suelo , Suelo , Regiones Antárticas , Frío
3.
Environ Microbiol ; 24(4): 1849-1864, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34528369

RESUMEN

Proteome changes can be used as an instrument to measure the effects of climate change, predict the possible future state of an ecosystem and the direction in which is headed. In this study, proteomic and gene ontology functional enrichment analysis of six Pseudogymnoascus spp. isolated from various global biogeographical regions were carried out to determine their response to heat stress. In total, 2122 proteins were identified with high confidence. Comparative quantitative analysis showed that changes in proteome profiles varied greatly between isolates from different biogeographical regions. Although the identities of the proteins that changed varied between the different regions, the functions they governed were similar. Gene ontology analysis showed enrichment of proteins involved in multiple protective mechanisms, including the modulation of protein homeostasis, regulation of energy production and activation of DNA damage and repair pathways. Our proteomic analysis did not show any clear relationship between protein changes and the strains' biogeographical origins.


Asunto(s)
Proteoma , Proteómica , Daño del ADN , Ecosistema , Respuesta al Choque Térmico/genética , Proteoma/genética , Proteoma/metabolismo , Proteostasis
4.
PeerJ ; 8: e10423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362961

RESUMEN

BACKGROUND: Increases in knowledge of climate change generally, and its impact on agricultural industries specifically, have led to a greater research effort aimed at improving understanding of the role of fungi in various fields. Fungi play a key role in soil ecosystems as the primary agent of decomposition, recycling of organic nutrients. Fungi also include important pathogens of plants, insects, bacteria, domestic animals and humans, thus highlighting their importance in many contexts. Temperature directly affects fungal growth and protein dynamics, which ultimately will cascade through to affect crop performance. To study changes in the global protein complement of fungi, proteomic approaches have been used to examine links between temperature stress and fungal proteomic profiles. SURVEY METHODOLOGY AND OBJECTIVES: A traditional rather than a systematic review approach was taken to focus on fungal responses to temperature stress elucidated using proteomic approaches. The effects of temperature stress on fungal metabolic pathways and, in particular, heat shock proteins (HSPs) are discussed. The objective of this review is to provide an overview of the effects of temperature stress on fungal proteomes. CONCLUDING REMARKS: Elucidating fungal proteomic response under temperature stress is useful in the context of increasing understanding of fungal sensitivity and resilience to the challenges posed by contemporary climate change processes. Although useful, a more thorough work is needed such as combining data from multiple -omics platforms in order to develop deeper understanding of the factor influencing and controlling cell physiology. This information can be beneficial to identify potential biomarkers for monitoring environmental changes in soil, including the agricultural ecosystems vital to human society and economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA