Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Front Microbiol ; 15: 1407258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165573

RESUMEN

High-fat diets (HFDs) shape the gut microbiome and promote obesity, inflammation, and liver steatosis. Fish and soybean are part of a healthy diet; however, the impact of these fats, in the absence of sucrose, on gut microbial dysbiosis and its association with liver steatosis remains unclear. Here, we investigated the effect of sucrose-free soybean oil-and fish oil-based high fat diets (HFDs) (SF-Soy-HFD and SF-Fish-HFD, respectively) on gut dysbiosis, obesity, steatosis, hepatic inflammation, and insulin resistance. C57BL/6 mice were fed these HFDs for 24 weeks. Both diets had comparable effects on liver and total body weights. But 16S-rRNA sequencing of the gut content revealed induction of gut dysbiosis at different taxonomic levels. The microbial communities were clearly separated, showing differential dysbiosis between the two HFDs. Compared with the SF-Fish-HFD control group, the SF-Soy-HFD group had an increased abundance of Bacteroidetes, Firmicutes, and Deferribacteres, but a lower abundance of Verrucomicrobia. The Clostridia/Bacteroidia (C/B) ratio was higher in the SF-Soy-HFD group (3.11) than in the SF-Fish-HFD group (2.5). Conversely, the Verrucomicrobiacae/S24_7 (also known as Muribaculaceae family) ratio was lower in the SF-Soy-HFD group (0.02) than that in the SF-Fish-HFD group (0.75). The SF-Soy-HFD group had a positive association with S24_7, Clostridiales, Allobaculum, Coriobacteriaceae, Adlercreutzia, Christensenellaceae, Lactococcus, and Oscillospira, but was related to a lower abundance of Akkermansia, which maintains gut barrier integrity. The gut microbiota in the SF-Soy-HFD group had predicted associations with host genes related to fatty liver and inflammatory pathways. Mice fed the SF-Soy-HFD developed liver steatosis and showed increased transcript levels of genes associated with de novo lipogenesis (Acaca, Fasn, Scd1, Elovl6) and cholesterol synthesis (Hmgcr) pathways compared to those in the SF-Fish-HFD-group. No differences were observed in the expression of fat uptake genes (Cd36 and Fabp1). The expression of the fat efflux gene (Mttp) was reduced in the SF-Soy-HFD group. Moreover, hepatic inflammation markers (Tnfa and Il1b) were notably expressed in SF-Soy-HFD-fed mice. In conclusion, SF-Soy-HFD feeding induced gut dysbiosis in mice, leading to steatosis, hepatic inflammation, and impaired glucose homeostasis.

2.
Med Princ Pract ; : 1-13, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047721

RESUMEN

OBJECTIVES: Bariatric surgery is a well-established treatment for obesity and type 2 diabetes. Tirzepatide, a dual GIP/GLP-1 receptor agonist, has emerged as a promising therapy for type 2 diabetes. This study aimed to compare the effects of bariatric surgery, semaglutide (a GLP-1 receptor agonist), and tirzepatide in Sprague-Dawley rats fed a high-fat diet. METHODS: Rats were divided into surgery, semaglutide, and tirzepatide treatment groups, along with a control group (sham). Weight, oral glucose tolerance, and levels of metabolic markers were assessed, along with adipose and liver tissue analysis. RESULTS: Surgery led to a 15.5% weight reduction, while rats treated with semaglutide exhibited a 10.7% reduction. Tirzepatide treatment at various concentrations (10, 50, and 100 nmol/kg) resulted in weight reductions of 5.0%, 14.9%, and 17.7%, respectively, compared to the sham group. Metabolic analyte levels decreased in intervention groups compared to the sham group, indicating improved metabolic health and glucose tolerance. Adipose tissue weight and hepatic liver fat droplets decreased in the intervention groups. CONCLUSION: Bariatric surgery and tirzepatide treatment significantly improved metabolic parameters in obese rats. Tirzepatide, particularly at higher concentrations, showed pronounced improvements compared to surgery and semaglutide. These findings suggest that high doses of tirzepatide could be explored as an alternative to bariatric surgery for the treatment of obesity.

3.
Heliyon ; 10(13): e33898, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071699

RESUMEN

Background: Autosomal recessive polycystic kidney disease (ARPKD), a rare genetic disorder characterized by kidney cysts, shows complex clinical and genetic heterogeneity. This study aimed to explore the genetic landscape of ARPKD in Kuwait and examine the intricate relationship between its genes and clinical presentation to enhance our understanding and contribute towards more efficient management strategies for ARPKD. Methods: This study recruited 60 individuals with suspected ARPKD from 44 different families in Kuwait. The participants were of different ethnicities and aged 0-70 years. Additionally, 33 were male, 15 were female, and 12 had indeterminant sex due to congenital anomalies. Comprehensive clinical data were collected. Mutations were identified by next-generation whole exome sequencing and confirmed using Sanger sequencing. Results: Of the 60 suspected ARPKD cases, 20 (33.3 %) died within hours of birth or by the end of the first month of life and one (1.7 %) within 12 months of birth. The remaining 39 (65.0 %) cases were alive, at the time of the study, and exhibited diverse clinical features related to ARPKD, including systematic hypertension (5.0 %), pulmonary hypoplasia (11.7 %), dysmorphic features (40.0 %), cardiac problems (8.3 %), cystic liver (5.0 %), Potter syndrome (13.3 %), developmental delay (8.3 %), and enlarged cystic kidneys (100 %). Twelve mutations, including novel truncating mutations, were identified in 31/60 cases (51.7 %) from 17/44 families (38.6 %). Additionally, 8/12 (66.7 %) mutations were in the PKHD1 gene, with the remaining four in different genes: NPHP3, VPS13P, CC2D2A, and ZNF423. Conclusions: This study highlights the spectrum of clinical features and genetic mutations of patients with ARPKD in Kuwait. It highlights the necessity for personalized approaches to improve ARPKD diagnosis and treatment, offering crucial insights into managing ARPKD.

4.
J Endocr Soc ; 8(8): bvae114, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38966710

RESUMEN

Background: Diabetic nephropathy (DN) represents a major chronic kidney disorder and a leading cause of end-stage renal disease (ESRD). Small RNAs have been showing great promise as diagnostic markers as well as drug targets. Identifying dysregulated micro RNAs (miRNAs) could help in identifying disease biomarkers and investigation of downstream interactions, shedding light on the molecular pathophysiology of DN. In this study, we analyzed small RNAs within human urinary extracellular vesicles (ECVs) from DN patients using small RNA next-generation sequencing. Method: In this cross-sectional study, urine samples were collected from 88 participants who were divided into 3 groups: type 2 diabetes (T2D) with DN (T2D + DN, n = 20), T2D without DN (T2D - DN, n = 40), and healthy individuals (n = 28). The study focused on isolating urinary ECVs to extract and sequence small RNAs. Differentially expressed small RNAs were identified, and a functional enrichment analysis was conducted. Results: The study revealed a distinct subset of 13 miRNAs and 10 Piwi-interacting RNAs that were significantly dysregulated in urinary ECVs of the DN group when compared to other groups. Notably, miR-151a-3p and miR-182-5p exhibited a unique expression pattern, being downregulated in the T2D - DN group, and upregulated in the T2D + DN group, thus demonstrating their effectiveness in distinguishing patients between the 2 groups. Eight driver genes were identified PTEN, SMAD2, SMAD4, VEGFA, CCND2, CDK6, LIN28B, and CHD1. Conclusion: Our findings contribute valuable insights into the pathogenesis of DN, uncovering novel biomarkers and identifying potential therapeutic targets that may aid in managing and potentially decelerating the progression of the disease.

5.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891081

RESUMEN

This study unveils verapamil's compelling cytoprotective and proliferative effects on pancreatic ß-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 ß-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil's capacity to significantly boost ß-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil's induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for ß-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil's efficacy in fostering ß-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil's reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing ß-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of ß-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting ß-cell functionality.


Asunto(s)
Colecistoquinina , Células Secretoras de Insulina , Verapamilo , Pez Cebra , Animales , Ratones , Línea Celular , Proliferación Celular/efectos de los fármacos , Colecistoquinina/metabolismo , Colecistoquinina/farmacología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Regeneración/efectos de los fármacos , Verapamilo/farmacología
6.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928172

RESUMEN

Alzheimer's disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6 showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators, and functional effects of proteome alterations were dissected using advanced bioinformatics methods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-causing pathways. Huntington's Disease Signaling and Synaptogenesis Signaling were stimulated while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular connections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration. These results help us comprehend AD's molecular foundation and demonstrate the promise of focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling personalized medicine.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Proteómica , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Proteómica/métodos , Ratones , Proteoma/metabolismo , Masculino , Transducción de Señal , Biomarcadores/metabolismo , Progresión de la Enfermedad
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731797

RESUMEN

Adipocyte P2 (aP2), also known as FABP4, is an adipokine that adipose tissue produces and expresses in macrophages. Its primary role is to facilitate the transportation of fatty acids across cell membranes. Numerous studies have reported associations between FABP4 and the development of metabolic disorders. However, there is limited knowledge regarding FABP4 expression in diabetes and obesity, especially about different age groups, genders, and ethnicities. This study aims to investigate the association between FABP4 levels, diabetes mellitus, and obesity within various ethnic groups. We measured plasma FABP4 concentrations in a cohort of 2083 patients from the KDEP study and gathered anthropometric data. Additionally, we collected and analyzed clinical, biochemical, and glycemic markers using multivariate regression analysis. The average FABP4 concentration was significantly higher in female participants than in males (18.8 ng/mL vs. 14.4 ng/mL, p < 0.001, respectively), and in those over 50 years old compared to those under 50 years of age (19.3 ng/mL vs. 16.2 ng/mL, p < 0.001, respectively). In this study, significant positive associations were found between the plasma level of FABP4 and obesity markers: BMI (r = 0.496, p < 0.001), hip circumference (r = 0.463, p < 0.001), and waist circumference (WC) (r = 0.436, p < 0.001). Similar observations were also seen with glycemic markers, which included HbA1c (r = 0.126, p < 0.001), fasting blood glucose (FBG) (r = 0.184, p < 0.001), fasting insulin (r = 0.326, p < 0.001), and HOMA-IR (r = 0.333, p < 0.001). Importantly, these associations remained significant even after adjusting for age, gender, and ethnicity. Furthermore, FABP4 levels were negatively associated with male gender (ß: -3.85, 95% CI: -4.92, -2.77, p < 0.001), and positively associated with age (ß: 0.14, 95% CI: 0.096, 0.183, p < 0.001), BMI (ß: 0.74, 95% CI: 0.644, 0.836, p < 0.001), and fasting insulin (ß: 0.115, 95% CI: 0.091, 0.138, p < 0.001). In this study, plasma FABP4 levels were significantly higher in diabetic and obese participants, and they were strongly influenced by age, gender, and ethnicity. These findings suggest that FABP4 may serve as a valuable prognostic and diagnostic marker for obesity and diabetes, particularly among female patients, individuals over 50 years old, and specific ethnic groups.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Obesidad , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Edad , Biomarcadores/sangre , Glucemia/metabolismo , Índice de Masa Corporal , Estudios de Cohortes , Diabetes Mellitus/sangre , Diabetes Mellitus/metabolismo , Etnicidad , Proteínas de Unión a Ácidos Grasos/sangre , Proteínas de Unión a Ácidos Grasos/metabolismo , Obesidad/sangre , Obesidad/metabolismo
8.
Front Endocrinol (Lausanne) ; 15: 1392675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711986

RESUMEN

Obesity and Type 2 Diabetes Mellitus (T2DM) are intricate metabolic disorders with a multifactorial etiology, often leading to a spectrum of complications. Recent research has highlighted the impact of these conditions on bone health, with a particular focus on the role of sclerostin (SOST), a protein molecule integral to bone metabolism. Elevated circulating levels of SOST have been observed in patients with T2DM compared to healthy individuals. This study aims to examine the circulating levels of SOST in a multiethnic population living in Kuwait and to elucidate the relationship between SOST levels, obesity, T2DM, and ethnic background. The study is a cross-sectional analysis of a large cohort of 2083 individuals living in Kuwait. The plasma level of SOST was measured using a bone panel multiplex assay. The study found a significant increase in SOST levels in individuals with T2DM (1008.3 pg/mL, IQR-648) compared to non-diabetic individuals (710.6 pg/mL, IQR-479). There was a significant gender difference in median SOST levels, with males exhibiting higher levels than females across various covariates (diabetes, IR, age, weight, and ethnicity). Notably, SOST levels varied significantly with ethnicity: Arabs (677.4 pg/mL, IQR-481.7), South Asians (914.6 pg/mL, IQR-515), and Southeast Asians (695.2 pg/mL, IQR-436.8). Furthermore, SOST levels showed a significant positive correlation with gender, age, waist circumference, systolic and diastolic blood pressure, fasting blood glucose, HbA1c, insulin, total cholesterol, triglycerides, HDL, LDL, ALT, and AST (p-Value ≥0.05). South Asian participants, who exhibited the highest SOST levels, demonstrated the most pronounced associations, even after adjusting for age, gender, BMI, and diabetes status (p-Value ≥0.05). The observed correlations of SOST with various clinical parameters suggest its significant role in the diabetic milieu, particularly pronounced in the South Asian population compared to other ethnic groups.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diabetes Mellitus Tipo 2 , Obesidad , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales/sangre , Árabes , Biomarcadores/sangre , Proteínas Morfogenéticas Óseas/sangre , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/epidemiología , Etnicidad , Marcadores Genéticos , Kuwait/epidemiología , Obesidad/sangre , Obesidad/etnología , Obesidad/epidemiología , Personas del Sur de Asia , Pueblos del Sudeste Asiático
9.
Front Endocrinol (Lausanne) ; 15: 1364503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715796

RESUMEN

Obesity has become a global epidemic in the modern world, significantly impacting the global healthcare economy. Lifestyle interventions remain the primary approach to managing obesity, with medical therapy considered a secondary option, often used in conjunction with lifestyle modifications. In recent years, there has been a proliferation of newer therapeutic agents, revolutionizing the treatment landscape for obesity. Notably, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as semaglutide, liraglutide, and the recently approved dual GLP-1/GIP RAs agonist tirzepatide, have emerged as effective medications for managing obesity, resulting in significant weight loss. These agents not only promote weight reduction but also improve metabolic parameters, including lipid profiles, glucose levels, and central adiposity. On the other hand, bariatric surgery has demonstrated superior efficacy in achieving weight reduction and addressing overall metabolic imbalances. However, with ongoing technological advancements, there is an ongoing debate regarding whether personalized medicine, targeting specific components, will shape the future of developing novel therapeutic agents for obesity management.


Asunto(s)
Fármacos Antiobesidad , Cirugía Bariátrica , Manejo de la Obesidad , Obesidad , Humanos , Obesidad/terapia , Cirugía Bariátrica/métodos , Manejo de la Obesidad/métodos , Fármacos Antiobesidad/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Pérdida de Peso
10.
Biomedicines ; 12(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790911

RESUMEN

Angiopoietins are crucial growth factors for maintaining a healthy, functional endothelium. Patients with type 2 diabetes (T2D) exhibit significant levels of angiogenic markers, particularly Angiopoietin-2, which compromises endothelial integrity and is connected to symptoms of endothelial injury and failure. This report examines the levels of circulating angiopoietins in people with T2D and diabetic nephropathy (DN) and explores its link with ANGPTL proteins. We quantified circulating ANGPTL3, ANGPTL4, ANGPTL8, Ang1, and Ang2 in the fasting plasma of 117 Kuwaiti participants, of which 50 had T2D and 67 participants had DN. The Ang2 levels increased with DN (4.34 ± 0.32 ng/mL) compared with T2D (3.42 ± 0.29 ng/mL). This increase correlated with clinical parameters including the albumin-to-creatinine ratio (ACR) (r = 0.244, p = 0.047), eGFR (r = -0.282, p = 0.021), and SBP (r = -0.28, p = 0.024). Furthermore, Ang2 correlated positively to both ANGPTL4 (r = 0.541, p < 0.001) and ANGPTL8 (r = 0.41, p = 0.001). Multiple regression analysis presented elevated ANGPTL8 and ACRs as predictors for Ang2's increase in people with DN. In people with T2D, ANGPTL4 positively predicted an Ang2 increase. The area under the curve (AUC) in receiver operating characteristic (ROC) analysis of the combination of Ang2 and ANGPTL8 was 0.77 with 80.7% specificity. In conclusion, significantly elevated Ang2 in people with DN correlated with clinical markers such as the ACR, eGFR, and SBP, ANGPTL4, and ANGPTL8 levels. Collectively, this study highlights a close association between Ang2 and ANGPTL8 in a population with DN, suggesting them as DN risk predictors.

11.
Biomedicines ; 12(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38790981

RESUMEN

The global incidence of Type 2 diabetes (T2D) is on the rise, fueled by factors such as obesity, sedentary lifestyles, socio-economic factors, and ethnic backgrounds. T2D is a multifaceted condition often associated with various health complications, including adverse effects on bone health. This study aims to assess key biomarkers linked to bone health and remodeling-Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL), and Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB)-among individuals with diabetes while exploring the impact of ethnicity on these biomarkers. A cross-sectional analysis was conducted on a cohort of 2083 individuals from diverse ethnic backgrounds residing in Kuwait. The results indicate significantly elevated levels of these markers in individuals with T2D compared to non-diabetic counterparts, with OPG at 826.47 (405.8) pg/mL, RANKL at 9.25 (17.3) pg/mL, and GPNMB at 21.44 (7) ng/mL versus 653.75 (231.7) pg/mL, 0.21 (9.94) pg/mL, and 18.65 (5) ng/mL in non-diabetic individuals, respectively. Notably, this elevation was consistent across Arab and Asian populations, except for lower levels of RANKL observed in Arabs with T2D. Furthermore, a positive and significant correlation between OPG and GPNMB was observed regardless of ethnicity or diabetes status, with the strongest correlation (r = 0.473, p < 0.001) found among Arab individuals with T2D. Similarly, a positive and significant correlation between GPNMB and RANKL was noted among Asian individuals with T2D (r = 0.401, p = 0.001). Interestingly, a significant inverse correlation was detected between OPG and RANKL in non-diabetic Arab individuals. These findings highlight dysregulation in bone remodeling markers among individuals with T2D and emphasize the importance of considering ethnic variations in T2D-related complications. The performance of further studies is warranted to understand the underlying mechanisms and develop interventions based on ethnicity for personalized treatment approaches.

12.
Med Princ Pract ; 33(3): 251-259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359814

RESUMEN

AIM: Sodium-glucose co-transporter 2 (SGLT2) inhibitors have emerged as a vital part of management of type 2 diabetes, as they have been shown to have both cardiovascular and renal benefits along with an improved survival rate in several randomized clinical trials. We designed a retrospective cohort study to investigate the impact of SGLT2 inhibitors on mortality among type 2 diabetes patients. METHODS: Patients with type 2 diabetes who presented to the Dasman Diabetes Institute in Kuwait were followed from January 1st, 2015, until January 20th, 2023. To control for non-random allocation of SGLT2 inhibitors and measured confounders, we performed one-to-one propensity score matching and evaluated outcomes in the matched cohorts using a Cox proportional hazards model. The primary treatment variable was SGLT2 inhibitor use; time to mortality from any cause was used as the outcome of interest. RESULTS: 1,551 patients were taking SGLT2 inhibitors, and 1,687 patients were not. After propensity score matching, 845 patients were on SGLT2 inhibitors, and 845 patients were not. In post-matching analysis, all-cause mortality was higher among patients who did not take SGLT2 inhibitors compared to patients taking SGLT2 inhibitors (5.2 vs. 2.1%, p = 0.0012). The hazard ratio of all-cause mortality in patients taking SGLT2 inhibitors was 0.42 (95% confidence interval [95% CI], 0.24-0.72). Additional adjustment of matching factors did not change the results. CONCLUSION: This observational study demonstrated substantial long-term reduction in mortality risk among patients with type 2 diabetes treated with SGLT2 inhibitors. This is irrespective of the stage of their renal diseases or GLP1 agonist.


Asunto(s)
Diabetes Mellitus Tipo 2 , Puntaje de Propensión , Modelos de Riesgos Proporcionales , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/mortalidad , Diabetes Mellitus Tipo 2/complicaciones , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Kuwait/epidemiología , Insuficiencia Renal/epidemiología
13.
J Gene Med ; 26(2): e3674, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404150

RESUMEN

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic renal disease progressing to end-stage renal disease. There is a pressing need for the identification of early ADPKD biomarkers to enable timely intervention and the development of effective therapeutic approaches. Here, we profiled human urinary extracellular vesicles small RNAs by small RNA sequencing in patients with ADPKD and compared their differential expression considering healthy control individuals to identify dysregulated small RNAs and analyze downstream interaction to gain insight about molecular pathophysiology. METHODS: This is a cross-sectional study where urine samples were collected from a total of 23 PKD1-ADPKD patients and 28 healthy individuals. Urinary extracellular vesicles were purified, and small RNA was isolated and sequenced. Differentially expressed Small RNA were identified and functional enrichment analysis of the critical miRNAs was performed to identify driver genes and affected pathways. RESULTS: miR-320b, miR-320c, miR-146a-5p, miR-199b-3p, miR-671-5p, miR-1246, miR-8485, miR-3656, has_piR_020497, has_piR_020496 and has_piR_016271 were significantly upregulated in ADPKD patient urine extracellular vesicles and miRNA-29c was significantly downregulated. Five 'driver' target genes (FBRS, EDC3, FMNL3, CTNNBIP1 and KMT2A) were identified. CONCLUSIONS: The findings of the present study make significant contributions to the understanding of ADPKD pathogenesis and to the identification of novel biomarkers and potential drug targets aimed at slowing disease progression in ADPKD.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Estudios Transversales , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Forminas
15.
Am J Nephrol ; 55(3): 380-388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38194940

RESUMEN

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disease characterized by the accumulation of fluid-filled cysts in the kidneys, leading to renal volume enlargement and progressive kidney function impairment. Disease severity, though, may vary due to allelic and genetic heterogeneity. This study aimed to determine genotype-phenotype correlations between PKD1 truncating and non-truncating mutations and kidney function decline in ADPKD patients. METHODS: We established a single-center retrospective cohort study in Kuwait where we followed every patient with a confirmed PKD1-ADPKD diagnosis clinically and genetically. Renal function tests were performed annually. We fitted generalized additive mixed effects models with random intercepts for each individual to analyze repeated measures of kidney function across mutation type. We then calculated survival time to kidney failure in a cox proportional hazards model. Models were adjusted for sex, age at visit, and birth year. RESULTS: The study included 22 truncating and 20 non-truncating (42 total) patients followed for an average of 6.6 years (range: 1-12 years). Those with PKD1 truncating mutations had a more rapid rate of eGFR decline (-4.7 mL/min/1.73 m2 per year; 95% CI: -5.0, -4.4) compared to patients with PKD1 non-truncating mutations (-3.5 mL/min/1.73 m2 per year; 95% CI: -4.0, -3.1) (p for interaction <0.001). Kaplan-Meier survival analysis of time to kidney failure showed that patients with PKD1 truncating mutations had a shorter renal survival time (median 51 years) compared to those with non-truncating mutations (median 56 years) (P for log-rank = 0.008). CONCLUSION: In longitudinal and survival analyses, patients with PKD1 truncating mutations showed a faster decline in kidney function compared to patients PKD1 non-truncating mutations. Early identification of patients with PKD1 truncating mutations can, at best, inform early clinical interventions or, at least, help suggest aggressive monitoring.


Asunto(s)
Tasa de Filtración Glomerular , Mutación , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/fisiopatología , Femenino , Masculino , Canales Catiónicos TRPP/genética , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Progresión de la Enfermedad , Estudios de Asociación Genética , Kuwait/epidemiología
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159461, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272177

RESUMEN

ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.


Asunto(s)
Adipogénesis , Insulina , Ratones , Animales , Diferenciación Celular/genética , Adipogénesis/genética , Transducción de Señal , ARN Interferente Pequeño , Proteína 8 Similar a la Angiopoyetina
17.
Front Immunol ; 14: 1273476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094298

RESUMEN

Type 1 diabetes (T1D) incidence has increased globally over the last decades, alongside other autoimmune diseases. Early screening of individuals at risk of developing T1D is vital to facilitate appropriate interventions and improve patient outcomes. This is particularly important to avoid life-threatening diabetic ketoacidosis and hospitalization associated with T1D diagnosis. Additionally, considering that new therapies have been developed for T1D, screening the population and individuals at high risk would be of great benefit. However, adopting such screening approaches may not be feasible due to limitations, such as cost, adaptation of such programs, and sample processing. In this perspective, we explore and highlight the use of multiplexing chemiluminescent assays for T1D screening and emphasize on their advantages in detecting multiple autoantibodies simultaneously, maximizing efficiency, and minimizing sample volume requirements. These assays could be extremely valuable for pediatric populations and large-scale screening initiatives, providing a cost-efficient solution with increased diagnostic accuracy and deeper insights into T1D pathogenesis. Eventually, the adoption of such screening methods can help transform T1D diagnosis, especially in countries with high T1D prevalence, such as Kuwait, which will contribute to the development of novel therapeutic interventions, positively impacting the lives of those affected by T1D and other autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Niño , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/complicaciones , Autoanticuerpos , Kuwait , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/complicaciones
18.
Front Endocrinol (Lausanne) ; 14: 1257051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929021

RESUMEN

Vitamin D deficiency (VDD) is widespread in the Arab world despite ample sunshine throughout the year. In our previous study, lifestyle and socio-demographic factors could explain only 45% of variability in vitamin D levels in Kuwaiti adolescents, suggesting that genetics might contribute to VDD in this region. Single nucleotide polymorphisms (SNP) in the 25-hydroxylase (CYP2R1) and the GC globulin (GC) genes have been reported to affect vitamin D levels in various ethnic groups in adults. In this study, we investigated the association of two SNPs from GC (rs4588 and rs7041) and three SNPs from CYP2R1 (rs10741657, rs11023374 and rs12794714) with vitamin D levels and VDD in a nationally representative sample of adolescents of Arab ethnicity from Kuwait. Multivariable linear regression, corrected for age, sex, parental education, governorate, body mass index, and exposure to sun, demonstrated that each of the 5 study variants showed significant associations with plasma 25(OH)D levels in one or more of the additive, recessive, and dominant genetic models - the rs10741657 under all the three models, rs12794714 under both the additive and recessive models, rs7041 under the recessive model; and rs4588 and rs11023374 under the dominant model. Minor alleles at rs4588 (T), rs7041 (A), rs11023374 (C), and rs12794714 (A) led to a decrease in plasma 25(OH)D levels - rs4588:[ß (95%CI) = -4.522 (-8.66,-0.38); p=0.033]; rs7041:[ß (95%CI) = -6.139 (-11.12,-1.15); p=0.016]; rs11023374:[ß (95%CI) = -4.296 (-8.18,-0.40); p=0.031]; and rs12794714:[ß (95%CI) = -3.498 (-6.27,-0.72); p=0.014]. Minor allele A at rs10741657 was associated with higher levels of plasma 25(OH)D levels [ß (95%CI) = 4.844 (1.62,8.06); p=0.003)] and lower odds of vitamin D deficiency (OR 0.40; p=0.002). These results suggest that the CYP2R1 and GC SNP variants are partly responsible for the high prevalence of VDD in Kuwait. Genotyping these variants may be considered for the prognosis of VDD in Kuwait.


Asunto(s)
Colestanotriol 26-Monooxigenasa , Familia 2 del Citocromo P450 , Deficiencia de Vitamina D , Proteína de Unión a Vitamina D , Vitamina D , Adolescente , Humanos , Árabes/genética , Colestanotriol 26-Monooxigenasa/genética , Etnicidad , Kuwait/epidemiología , Oxigenasas de Función Mixta/genética , Polimorfismo de Nucleótido Simple , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/genética , Proteína de Unión a Vitamina D/genética , Vitaminas , Familia 2 del Citocromo P450/genética
19.
Cells ; 12(21)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37947641

RESUMEN

BACKGROUND: Angiopoietin-like protein 8 (ANGPTL8) is known to regulate lipid metabolism and inflammation. It interacts with ANGPTL3 and ANGPTL4 to regulate lipoprotein lipase (LPL) activity and with IKK to modulate NF-κB activity. Further, a single nucleotide polymorphism (SNP) leading to the ANGPTL8 R59W variant associates with reduced low-density lipoprotein/high-density lipoprotein (LDL/HDL) and increased fasting blood glucose (FBG) in Hispanic and Arab individuals, respectively. In this study, we investigate the impact of the R59W variant on the inflammatory activity of ANGPTL8. METHODS: The ANGPTL8 R59W variant was genotyped in a discovery cohort of 867 Arab individuals from Kuwait. Plasma levels of ANGPTL8 and inflammatory markers were measured and tested for associations with the genotype; the associations were tested for replication in an independent cohort of 278 Arab individuals. Impact of the ANGPTL8 R59W variant on NF-κB activity was examined using approaches including overexpression, luciferase assay, and structural modeling of binding dynamics. RESULTS: The ANGPTL8 R59W variant was associated with increased circulatory levels of tumor necrosis factor alpha (TNFα) and interleukin 7 (IL7). Our in vitro studies using HepG2 cells revealed an increased phosphorylation of key inflammatory proteins of the NF-κB pathway in individuals with the R59W variant as compared to those with the wild type, and TNFα stimulation further elevated it. This finding was substantiated by increased luciferase activity of NF-κB p65 with the R59W variant. Modeled structural and binding variation due to R59W change in ANGPTL8 agreed with the observed increase in NF-κB activity. CONCLUSION: ANGPTL8 R59W is associated with increased circulatory TNFα, IL7, and NF-κB p65 activity. Weak transient binding of the ANGPTL8 R59W variant explains its regulatory role on the NF-κB pathway and inflammation.


Asunto(s)
Proteína 8 Similar a la Angiopoyetina , Hormonas Peptídicas , Humanos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa , Proteínas Similares a la Angiopoyetina/genética , Proteínas Similares a la Angiopoyetina/metabolismo , Interleucina-7 , Inflamación/genética , Transducción de Señal , Luciferasas/metabolismo , Proteína 3 Similar a la Angiopoyetina , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo
20.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894865

RESUMEN

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Estrés del Retículo Endoplásmico , Glucosa , Inflamación , FN-kappa B/metabolismo , Obesidad , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA