Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PeerJ ; 9: e11184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981494

RESUMEN

Understanding the effects of organic pasture management on the soil microbiome is important for sustainable forage production since soil microbiome diversity contributes to improved nutrient cycling, soil structure, plant growth, and environmental resiliency; however, the soil microbiome response to pasture management is largely unknown. This study assessed the soil microbial diversity, richness, and community structure following 10 years of pasture management (organic or non-organic) of the V4 region of the 16S rRNA using the Illumina MiSeq platform. Soil samples were collected from 0-15 cm in July and August from 2017-2018 and soil nutrient properties (nutrients, carbon, nitrogen, and pH) quantified and correlated with soil microbial diversity. Overall, greater soil bacterial species richness (P ≤ 0.05) occurred in organic relative to non-organic (conventional) systems. Management affected bacterial species richness (Chao1), with greater richness occurring in organic pasture soils and less richness occurring in non-organic systems (P ≤ 0.05). Similarly, management affected bacterial evenness (Simpson's index), with a more diverse community occurring in organically managed soils relative to non-organic pastures (P ≤ 0.05). Linear discriminant analysis effect size analysis showed statistically significant and biologically consistent differences in bacterial taxa in organic compared with non-organic soils. Therefore, there was a shift in bacterial community structure in organic relative to non-organic soils (P ≤ 0.05). Additionally, soil nutrients (Fe, Mg, Ni, S, Al, K, Cd, and Cu), pH, C, and N were correlated with one or more dominant bacterial phyla (Gemmatimonadetes, Planctomycetes, Firmicutes, Chloroflexi, Actinobacteria, and Acidobacteria). Overall, pasture management affected soil microbial diversity, with greater diversity occurring in organic than non-organic systems, likely owing to applications of organic poultry litter in organic systems compared to non-organic management (use of inorganic-fertilizers and herbicides). Results indicate that when pastures are converted to organic production systems, soil microbial richness and diversity may increase, thereby resulting in enhanced soil microbiome diversity and overall ecosystem services.

2.
Mol Cell Biochem ; 476(2): 1303-1312, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33301106

RESUMEN

The sheared avian intestinal villus-crypts exhibit high tendency to self-repair and develop enteroids in culture. Presuming that this transition process involves differential biomolecular changes, we employed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) to find whether there were differences in the spectral profiles of sheared villi versus the enteroids, assessed in the mass range of 2-18 kDa. The results showed substantial differences in the intensities of the spectral peaks, one particularly corresponding to the mass of 4963 Da, which was significantly low in the sheared villus-crypts compared with the enteroids. Based on our previous results with other avian tissues and further molecular characterization by LC-ESI-IT-TOF-MS, and multiple reaction monitoring (MRM), the peak was identified to be thymosin ß4 (Tß4), a ubiquitously occurring regulatory peptide implicated in wound healing process. The identity of the peptide was further confirmed by immunohistochemistry which showed it to be present in a very low levels in the sheared villi but replete in the enteroids. Since Tß4 sequesters G-actin preventing its polymerization to F-actin, we compared the changes in F-actin by its immunohistochemical localization that showed no significant differences between the sheared villi and enteroids. We propose that depletion of Tß4 likely precedes villous reparation process. The possible mechanism for the differences in Tß4 profile in relation to the healing of the villus-crypts to developing enteroids is discussed.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Mucosa Intestinal/citología , Espectrometría de Masas/métodos , Proteoma/metabolismo , Timosina/metabolismo , Cicatrización de Heridas , Animales , Técnicas de Cultivo de Célula/métodos , Pollos , Mucosa Intestinal/metabolismo , Proteoma/análisis
3.
Vet Parasitol ; 288: 109295, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33171413

RESUMEN

The objective was to examine the effects of supplementary quebracho on control of coccidiosis and gastrointestinal nematodes in lambs and kids. In Exp. 1, naturally infected lambs weaned (87.8 ± 0.4 days of age; day 0) in January (winter) were blocked by sex and randomly assigned (n = 10/treatment) to receive supplement with or without 100 g/lamb of quebracho for 28 days. In Exp. 2, single or twin rearing ewes were randomly assigned into two groups, and naturally infected lambs were fed control (n = 28) or quebracho (100 g/lamb of quebracho tannins in feed; n = 27) between -28 and 21 days (weaning = day 0; 70.8 ± 0.1 days of age). In Exp. 3, weaned doe kids (57.6 ± 2.0 days of age) were randomly assigned to receive alfalfa (Medicago sativa) supplement with (n = 9) or without (n = 8) 50 g/kid quebracho or sericea lespedeza (Lespedeza cuneata) with quebracho (n = 8) for 21 days. Fecal oocyst count (FOC), nematode egg counts (FEC), fecal score, dag score (soiling around rear quarters), and blood packed cell volume (PCV) were determined every 7 days. Data were analyzed as repeated measures using mixed models. In Exp. 1, FOC decreased in quebracho-fed lambs (diet × time, P < 0.001) but FEC was similar between treatments during the feeding period (P = 0.19). Packed cell volume (P = 0.19) and fecal score (P = 0.42) were similar between groups. Quebracho-fed lambs had a greater dag score initially (diet × time, P = 0.02), but were similar by day 42 (P = 0.72). In Exp. 2, FOC remained low (P = 0.02), PCV tended to decrease (P = 0.06), but FEC increased on days 14 and 21 (diet × time; P < 0.001) in quebracho compared with control-fed lambs. Quebracho-fed lambs had lower fecal score (diet × time; P = 0.005) but higher dag score (diet × time; P < 0.001). In Exp. 3, FOC of kids fed quebracho (alfalfa or sericea lespedeza supplement) was lower than control (P < 0.001). Fecal score of kids fed sericea lespedeza compared with alfalfa were lower regardless of quebracho (P = 0.01). There were no differences among treatments for dag, FEC, PCV, or body weight (P> 0.10). Quebracho was effective in reducing FOC but not clinical signs of coccidiosis in both lambs and kids, and may not be highly digestible in lambs as it caused loose stools.


Asunto(s)
Anacardiaceae/química , Coccidiosis/veterinaria , Enfermedades de las Cabras/prevención & control , Infecciones por Nematodos/veterinaria , Enfermedades de las Ovejas/prevención & control , Taninos/metabolismo , Alimentación Animal/análisis , Animales , Coccidiosis/parasitología , Coccidiosis/prevención & control , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Eimeria/efectos de los fármacos , Tracto Gastrointestinal/parasitología , Enfermedades de las Cabras/parasitología , Cabras , Lespedeza/química , Medicago sativa/química , Nematodos/efectos de los fármacos , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/prevención & control , Distribución Aleatoria , Ovinos , Enfermedades de las Ovejas/parasitología , Oveja Doméstica , Taninos/administración & dosificación , Taninos/química
4.
BMC Vet Res ; 16(1): 179, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503669

RESUMEN

BACKGROUND: Three-dimensional models of cell culture such as organoids and mini organs accord better advantage over regular cell culture because of their ability to simulate organ functions hence, used for disease modeling, metabolic research, and the development of therapeutics strategies. However, most advances in this area are limited to mammalian species with little progress in others such as poultry where it can be deployed to study problems of agricultural importance. In the course of enterocyte culture in chicken, we observed that intestinal mucosal villus-crypts self-repair and form spheroid-like structures which appear to be useful as ex vivo models to study enteric physiology and diseases. RESULTS: The villus-crypts harvested from chicken intestinal mucosa were cultured to generate enteroids, purified by filtration then re cultured with different chemicals and growth factors to assess their response based on their morphological dispositions. Histochemical analyses using marker antibodies and probes showed the enteroids consisting different cell types such as epithelial, goblet, and enteroendocrine cells typical to villi and retain functional characteristics of intestinal mucosa. CONCLUSIONS: We present a simple procedure to generate avian crypt-villous enteroids containing different cell types. Because the absorptive cells are functionally positioned outwards, similar to the luminal enterocytes, the cells have better advantages to interact with the factors present in the culture medium. Thus, the enteroids have the potential to study the physiology, metabolism, and pathology of the intestinal villi and can be useful for preliminary screenings of the factors that may affect gut health in a cost-effective manner and reduce the use of live animals.


Asunto(s)
Técnicas de Cultivo de Célula/veterinaria , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula/métodos , Pollos , Enterocitos/citología , Células Epiteliales/citología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Organoides/citología , Organoides/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA