Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Biol ; 17(1): e2006972, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30695023

RESUMEN

Insulin provides important information to tissues about feeding behavior and energy status. Defective insulin signaling is associated with ageing, tissue dysfunction, and impaired wound healing. In the liver, insulin resistance leads to chronic damage and fibrosis, but it is unclear how tissue-repair mechanisms integrate insulin signals to coordinate an appropriate injury response or how they are affected by insulin resistance. In this study, we demonstrate that insulin resistance impairs local cellular crosstalk between the fibrotic stroma and bipotent adult liver progenitor cells (LPCs), whose paracrine interactions promote epithelial repair and tissue remodeling. Using insulin-resistant mice deficient for insulin receptor substrate 2 (Irs2), we highlight dramatic impairment of proregenerative fibroblast growth factor 7 (Fgf7) signaling between stromal niche cells and LPCs during chronic injury. We provide a detailed account of the role played by IRS2 in promoting Fgf7 ligand and receptor (Fgfr2-IIIb) expression by the two cell compartments, and we describe an insulin/IRS2-dependent feed-forward loop capable of sustaining hepatic re-epithelialization by driving FGFR2-IIIb expression. Finally, we shed light on the regulation of IRS2 and FGF7 within the fibrotic stroma and show-using a human coculture system-that IRS2 silencing shifts the equilibrium away from paracrine epithelial repair in favor of fibrogenesis. Hence, we offer a compelling insight into the contribution of insulin resistance to the pathogenesis of chronic liver disease and propose IRS2 as a positive regulator of communication between cell types and the transition between phases of stromal to epithelial repair.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Animales , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Factor 7 de Crecimiento de Fibroblastos/fisiología , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/fisiología , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Células Madre/fisiología
2.
Stem Cells ; 35(12): 2403-2416, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28833887

RESUMEN

Insulin is one of the standard components used to culture primary neurospheres. Although it stimulates growth of different types of cells, the effects of insulin on adult neural stem cells (NSCs) have not been well characterized. Here, we reveal that insulin stimulates proliferation, but not survival or self-renewal, of adult NSCs. This effect is mediated by insulin receptor substrate 2 (IRS2) and subsequent activation of the protein kinase B (or Akt), leading to increased activity of the G1-phase cyclin-dependent kinase 4 (Cdk4) and cell cycle progression. Neurospheres isolated from Irs2-deficient mice are reduced in size and fail to expand in culture and this impaired proliferation is rescued by introduction of a constitutively active Cdk4 (Cdk4R24C/R24C ). More interestingly, activation of the IRS2/Akt/Cdk4 signaling pathway by insulin is also necessary for the generation in vitro of neurons and oligodendrocytes from NSCs. Furthermore, the IRS2/Cdk4 pathway is also required for neuritogenesis, an aspect of neuronal maturation that has not been previously linked to regulation of the cell cycle. Differentiation of NSCs usually follows exit from the cell cycle due to increased levels of CDK-inhibitors which prevent activation of CDKs. In contrast, our data indicate that IRS2-mediated Cdk4 activity in response to a mitogen such as insulin promotes terminal differentiation of adult NSCs. Stem Cells 2017;35:2403-2416.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Insulina/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fase G1/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Fosforilación/efectos de los fármacos
3.
Cereb Cortex ; 22(8): 1717-27, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21955917

RESUMEN

The beneficial effects of insulin and insulin-like growth factor I on cognition have been documented in humans and animal models. Conversely, obesity, hyperinsulinemia, and diabetes increase the risk for neurodegenerative disorders including Alzheimer's disease (AD). However, the mechanisms by which insulin regulates synaptic plasticity are not well understood. Here, we report that complete disruption of insulin receptor substrate 2 (Irs2) in mice impairs long-term potentiation (LTP) of synaptic transmission in the hippocampus. Basal synaptic transmission and paired-pulse facilitation were similar between the 2 groups of mice. Induction of LTP by high-frequency conditioning tetanus did not activate postsynaptic N-methyl-D-aspartate (NMDA) receptors in hippocampus slices from Irs2(-/-) mice, although the expression of NR2A, NR2B, and PSD95 was equivalent to wild-type controls. Activation of Fyn, AKT, and MAPK in response to tetanus stimulation was defective in Irs2(-/-) mice. Interestingly, IRS2 was phosphorylated during induction of LTP in control mice, revealing a potential new component of the signaling machinery which modulates synaptic plasticity. Given that IRS2 expression is diminished in Type 2 diabetics as well as in AD patients, these data may reveal an explanation for the prevalence of cognitive decline in humans with metabolic disorders by providing a mechanistic link between insulin resistance and impaired synaptic transmission.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Western Blotting , Femenino , Hipocampo/metabolismo , Inmunoprecipitación , Proteínas Sustrato del Receptor de Insulina/deficiencia , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA