Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679471

RESUMEN

The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only. Here, we apply bioluminescence resonance energy transfer in living cells to determine hormone-receptor interactions between a Gaussia luciferase (Gluc)-luteinizing hormone/chorionic gonadotropin receptor (LHCGR) fusion and its ligands (human chorionic gonadotropin or LH) fused to the enhanced green fluorescent protein. The Gluc-LHCGR, as well as other Gluc-G protein-coupled receptors such as the somatostatin and the C-X-C motif chemokine receptors, is expressed on the plasma membrane, where luminescence activity is equal to membrane receptor expression, and is fully functional. The chimeric enhanced green fluorescent protein-ligands are properly secreted from cells and able to bind and activate the wild-type LHCGR as well as the Gluc-LHCGR. Finally, bioluminescence resonance energy transfer was used to determine the interactions between clinically relevant mutations of the hormones and the LHCGR that show that this bioassay provides a fast and effective, safe, and cost-efficient tool to assist the molecular characterization of mutations in either the receptor or ligand and that it is compatible with downstream cellular assays to determine receptor activation/function.


Asunto(s)
Proteínas Fluorescentes Verdes , Unión Proteica , Humanos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Receptores de HL/metabolismo , Receptores de HL/genética , Luciferasas/metabolismo , Luciferasas/genética , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Gonadotropina Coriónica/metabolismo , Células HEK293 , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Transferencia de Energía , Glicoproteínas/metabolismo , Mediciones Luminiscentes/métodos
2.
Ann Agric Environ Med ; 31(1): 37-46, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38549475

RESUMEN

INTRODUCTION AND OBJECTIVE: Including additional compounds that disturb the energy metabolism of cancer cells in advanced cancer therapy regimens may be an approach to overcome the problem of drug resistance and the therapeutic effectiveness of classic chemotherapeutics. One of the compounds that decouple oxidative phosphorylation, and thus alter the activity of energy-producing pathways, is 2,4-DNP (2,4- dinitrophenol). OBJECTIVE: The aim of the study was to assess the ability of the 2,4-DNP to sensitize prostate cancer cells to the action of cisplatin and etoposide, or to intensify their action. MATERIAL AND METHODS: The research was carried out on three prostate cancer cell lines (LNCaP, PC-3, DU-145. To assess the effect of cisplatin or etoposide with 2,4-DNP on prostate cancer cells, MTT assay, analysis of the cell cycle and apoptosis detection was performed. Oxidative stress was investigated by CellRox fluorescence staining and expression of genes related to antioxidant defence. In addition, analysis was conducted of the expression of genes related to cell cycle inhibition, transporters associated with multi-drug resistance and DNA repair. RESULTS: The study showed that the simultaneous incubation of 2,4-DNP with cisplatin or etoposide enhances the cytotoxic effect of the chemotherapeutic agent only in LNCaP cells (oxidative phenotype). CONCLUSIONS: The enhanced cytotoxic effect of chemotherapeutics by 2,4-DNP may be the result of disturbed redox balance, reduced ability of cells to repair DNA, and the oxidative metabolic phenotype of prostate cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Etopósido/farmacología , Etopósido/uso terapéutico , 2,4-Dinitrofenol/farmacología , 2,4-Dinitrofenol/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular , Apoptosis , Línea Celular Tumoral
3.
Ann Agric Environ Med ; 30(1): 65-76, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36999858

RESUMEN

INTRODUCTION: Ionizing radiation is one of the most widely used therapeutic methods in the treatment of prostate cancer, but the problem is developing radioresistance of the tumour. There is evidence that metabolic reprogramming in cancer is one of the major contributors to radioresistance and mitochondria play a crucial role in this process. OBJECTIVE: The aim of the study was to assess the influence of oxidative phosphorylation uncoupling to radiosensitivity of prostate cancer cells differing in metabolic phenotype. MATERIAL AND METHODS: LNCaP, PC-3 and DU-145 cells were exposed to X-rays and simultaneously treated with 2,4-dinitrophenol (2,4-DNP). The radiosensitive of cell lines was determined by cell clonogenic assay and cell cycle analysis. The cytotoxic effect was evaluated with MTT and CVS (Crystal violet staining) assay, apoptosis detection and cell cycle analysis. The phenotype of the cells was determined by glucose uptake and lactate release, ATP level measurement as well as basal reactive oxygen species level and mRNA expression of genes related to oxidative stress defence. RESULTS: The synergistic effect of 2,4-dinitrophenol and X-ray was observed only in the case of the LNCaP cell line. CONCLUSIONS: Phenotypic analysis indicates that this may be due to the highest dependence of these cells on oxidative phosphorylation and sensitivity to disruption of their redox status.


Asunto(s)
2,4-Dinitrofenol , Neoplasias de la Próstata , Humanos , Masculino , Línea Celular Tumoral , 2,4-Dinitrofenol/farmacología , Neoplasias de la Próstata/radioterapia , Mitocondrias/metabolismo , Mitocondrias/patología , Tolerancia a Radiación/genética , Apoptosis/efectos de la radiación
4.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615632

RESUMEN

Doxorubicin (DOX) is one of the most used chemotherapeutic agents in the treatment of various types of cancer. However, a continual problem that is associated with its application in therapeutic regimens is the development of dose-dependent cardiotoxicity. The progression of this process is associated with a range of different mechanisms, but especially with the high level of oxidative stress. The aim of the study was to evaluate the effects of the water and methanol-water extracts from the plant Centaurea castriferrei (CAS) obtained by the ultrasound-assisted extraction method on the DOX-induced cardiotoxicity in the rat embryonic cardiomyocyte cell line H9c2. The H9c2 cells were treated for 48 h with the DOX and water or methanol-water extracts, or a combination (DOX + CAS H2O/CAS MeOH). The MTT assay, cell cycle analysis, and apoptosis detection revealed that both the tested extracts significantly abolished the cytotoxic effect caused by DOX. Moreover, the detection of oxidative stress by the CellROX reagent, the evaluation of the number of AP sites, and the expressions of the genes related to the oxidative stress defense showed substantial reductions in the oxidative stress levels in the H9c2 cells treated with the combination of DOX and CAS H2O/CAS MeOH compared with the DOX administered alone. The tested extracts did not affect the cytotoxic effect of DOX on the MCF-7 breast cancer cell line. The obtained results constitute the basis for further research in the context of the application of C. castriferrei extracts as adjuvants in the therapy regiments of cancer patients treated with DOX.


Asunto(s)
Cardiotoxicidad , Metanol , Ratas , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Metanol/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/metabolismo , Miocitos Cardíacos , Estrés Oxidativo , Apoptosis
5.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364051

RESUMEN

One of the strategies for the treatment of advanced cancer diseases is targeting the energy metabolism of the cancer cells. The compound 2,4-DNP (2,4-dinitrophenol) disrupts the cell energy metabolism through the ability to decouple oxidative phosphorylation. The aim of the study was to determine the ability of 2,4-DNP to sensitize prostate cancer cells with different metabolic phenotypes to the action of known anthracyclines (doxorubicin and epirubicin). The synergistic effect of the anthracyclines and 2,4-DNP was determined using an MTT assay, apoptosis detection and a cell cycle analysis. The present of oxidative stress in cancer cells was assessed by CellROX, the level of cellular thiols and DNA oxidative damage. The study revealed that the incubation of LNCaP prostate cancer cells (oxidative phenotype) with epirubicin and doxorubicin simultaneously with 2,4-DNP showed the presence of a synergistic effect for both the cytostatics. Moreover, it contributes to the increased induction of oxidative stress, which results in a reduced level of cellular thiols and an increased number of AP sites in the DNA. The synergistic activity may consist of an inhibition of ATP synthesis and the simultaneous production of toxic amounts of ROS, destroying the mitochondria. Additionally, the sensitivity of the LNCaP cell line to the anthracyclines is relatively higher compared to the other two (PC-3, DU-145).


Asunto(s)
Antraciclinas , Neoplasias de la Próstata , Humanos , Masculino , Antraciclinas/farmacología , 2,4-Dinitrofenol/farmacología , Epirrubicina/farmacología , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Dinitrofenoles/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Compuestos de Sulfhidrilo
6.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364358

RESUMEN

The Centaurea L. (Asteraceae) genus includes many plant species with therapeutic properties. Centaurea castriferrei Borbás & Waisb is one of the least known and least described plants of this genus. The aim of the study was the phytochemical analysis of water and methanol-water extracts (7:3 v/v) obtained from the aerial parts of the plant as well as evaluation of their anticancer activity. Quantitative determinations of phenolic compounds and flavonoids were performed, and the antioxidant potential was measured using the CUPRAC method. The RP-HPLC/DAD analysis and HPLC-ESI-QTOF-MS mass spectroscopy were performed, to determine the extracts' composition. The antiproliferative activity of the obtained extracts was tested in thirteen cancer cell lines and normal skin fibroblasts using MTT test. Regardless of the extraction method and the extractant used, similar cytotoxicity of the extracts on most cancer cell lines was observed. However, the methanol-water extracts (7:3 v/v) contained significantly more phenolic compounds and flavonoids as well as showing stronger antioxidant properties in comparison to water extracts. Centaurea castriferrei Borbás & Waisb is a rich source of apigenin and its derivatives. In all tested extracts, chlorogenic acid and centaurein were also identified. In vitro research revealed that this plant may be a potential source of compounds with anticancer activity.


Asunto(s)
Centaurea , Neoplasias , Humanos , Centaurea/química , Antioxidantes/farmacología , Antioxidantes/análisis , Metanol , Extractos Vegetales/química , Fitoquímicos/farmacología , Flavonoides/farmacología , Fenoles/farmacología , Fenoles/análisis , Neoplasias/tratamiento farmacológico , Agua
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769241

RESUMEN

Reversible Nε-lysine acetylation/deacetylation is one of the most common post-translational modifications (PTM) of histones and non-histone proteins that is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). This epigenetic process is highly involved in carcinogenesis, affecting histone and non-histone proteins' properties and their biological functions. Some of the transcription factors, including tumor suppressors and oncoproteins, undergo this modification altering different cell signaling pathways. HDACs deacetylate their targets, which leads to either the upregulation or downregulation of proteins involved in the regulation of cell cycle and apoptosis, ultimately influencing tumor growth, invasion, and drug resistance. Therefore, epigenetic modifications are of great clinical importance and may constitute a new therapeutic target in cancer treatment. This review is aimed to present the significance of HDACs in carcinogenesis through their influence on functions of transcription factors, and therefore regulation of different signaling pathways, cancer progression, and metastasis.


Asunto(s)
Carcinogénesis/metabolismo , Ciclo Celular , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Carcinogénesis/genética , Carcinogénesis/patología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Factores de Transcripción/genética
8.
Molecules ; 26(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577124

RESUMEN

Leflunomide, an anti-inflammatory agent, has been shown to be effective in multiple myeloma (MM) treatment; however, the mechanism of this phenomenon has not been fully elucidated. The aim of the study was to assess the role of mitochondria and dihydroorotate dehydrogenase (DHODH) inhibition in the cytotoxicity of leflunomide in relation to the MM cell line RPMI 8226. The cytotoxic effect of teriflunomide-an active metabolite of leflunomide-was determined using MTT assay, apoptosis detection, and cell cycle analysis. To evaluate DHODH-dependent toxicity, the cultures treated with teriflunomide were supplemented with uridine. Additionally, the level of cellular thiols as oxidative stress symptom was measured as well as mitochondrial membrane potential and protein tyrosine kinases (PTK) activity. The localization of the compound in cell compartments was examined using HPLC method. Teriflunomide cytotoxicity was not abolished in uridine presence. Observed apoptosis occurred in a mitochondria-independent manner, there was also no decrease in cellular thiols level. Teriflunomide arrested cell cycle in the G2/M phase which is not typical for DHODH deficiency. PTK activity was decreased only at the highest drug concentration. Interestingly, teriflunomide was not detected in the mitochondria. The aforementioned results indicate DHODH- and mitochondria-independent mechanism of leflunomide toxicity against RPMI 8226 cell line.


Asunto(s)
Leflunamida , Mieloma Múltiple , Antineoplásicos , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Crotonatos , Inhibidores Enzimáticos/farmacología , Humanos , Hidroxibutiratos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nitrilos , Toluidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA