Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Rep ; 43(5): 114195, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717900

RESUMEN

Clathrin-mediated endocytosis (CME) is an essential process of cargo uptake operating in all eukaryotes. In animals and yeast, BAR-SH3 domain proteins, endophilins and amphiphysins, function at the conclusion of CME to recruit factors for vesicle scission and uncoating. Arabidopsis thaliana contains the BAR-SH3 domain proteins SH3P1-SH3P3, but their role is poorly understood. Here, we identify SH3Ps as functional homologs of endophilin/amphiphysin. SH3P1-SH3P3 bind to discrete foci at the plasma membrane (PM), and SH3P2 recruits late to a subset of clathrin-coated pits. The SH3P2 PM recruitment pattern is nearly identical to its interactor, a putative uncoating factor, AUXILIN-LIKE1. Notably, SH3P1-SH3P3 are required for most of AUXILIN-LIKE1 recruitment to the PM. This indicates a plant-specific modification of CME, where BAR-SH3 proteins recruit auxilin-like uncoating factors rather than the uncoating phosphatases, synaptojanins. SH3P1-SH3P3 act redundantly in overall CME with the plant-specific endocytic adaptor TPLATE complex but not due to an SH3 domain in its TASH3 subunit.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Clatrina , Endocitosis , Clatrina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Auxilinas/metabolismo , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Dominios Homologos src , Unión Proteica
2.
Elife ; 132024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381485

RESUMEN

The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.


Asunto(s)
Epilepsia Generalizada , Aparato de Golgi , Vesículas Secretoras , Convulsiones Febriles , Citoplasma , Membrana Celular , Clatrina
3.
Proc Natl Acad Sci U S A ; 119(31): e2121058119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878023

RESUMEN

Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Hormonas Peptídicas , Raíces de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hormonas Peptídicas/metabolismo , Fosfotransferasas , Raíces de Plantas/crecimiento & desarrollo
5.
New Phytol ; 232(2): 510-522, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34254313

RESUMEN

Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underlie differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, as well as the crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Raíces de Plantas/metabolismo
6.
Plant Physiol ; 186(2): 1122-1142, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33734402

RESUMEN

The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Endocitosis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Ácidos Naftalenoacéticos/farmacología , Transporte de Proteínas , Red trans-Golgi/efectos de los fármacos
7.
Plant Cell ; 32(5): 1644-1664, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193204

RESUMEN

Cell polarity is a fundamental feature of all multicellular organisms. PIN auxin transporters are important cell polarity markers that play crucial roles in a plethora of developmental processes in plants. Here, to identify components involved in cell polarity establishment and maintenance in plants, we performed a forward genetic screening of PIN2:PIN1-HA;pin2 Arabidopsis (Arabidopsis thaliana) plants, which ectopically express predominantly basally localized PIN1 in root epidermal cells, leading to agravitropic root growth. We identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused a switch in PIN1-HA polarity from the basal to apical side of root epidermal cells. Next Generation Sequencing and complementation experiments established the causative mutation of repp12 as a single amino acid exchange in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase predicted to function in vesicle formation. repp12 and ala3 T-DNA mutants show defects in many auxin-regulated processes, asymmetric auxin distribution, and PIN trafficking. Analysis of quintuple and sextuple mutants confirmed the crucial roles of ALA proteins in regulating plant development as well as PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with the ADP ribosylation factor GTPase exchange factors GNOM and BIG3 in regulating PIN polarity, trafficking, and auxin-mediated development.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , GTP Fosfohidrolasas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Epistasis Genética/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Unión Proteica/efectos de los fármacos , Nicotiana/metabolismo , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/metabolismo
8.
Plant Sci ; 293: 110414, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081263

RESUMEN

The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization.


Asunto(s)
Arabidopsis/metabolismo , Transporte Biológico/fisiología , Clatrina/metabolismo , Ácidos Indolacéticos/metabolismo , Actinas/genética , Proteínas de Arabidopsis/metabolismo , Polaridad Celular , Endocitosis , Proteínas de Transporte de Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transporte de Proteínas
9.
Int J Mol Sci ; 20(13)2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31284661

RESUMEN

Cortical microtubule arrays in elongating epidermal cells in both the root and stem of plants have the propensity of dynamic reorientations that are correlated with the activation or inhibition of growth. Factors regulating plant growth, among them the hormone auxin, have been recognized as regulators of microtubule array orientations. Some previous work in the field has aimed at elucidating the causal relationship between cell growth, the signaling of auxin or other growth-regulating factors, and microtubule array reorientations, with various conclusions. Here, we revisit this problem of causality with a comprehensive set of experiments in Arabidopsis thaliana, using the now available pharmacological and genetic tools. We use isolated, auxin-depleted hypocotyls, an experimental system allowing for full control of both growth and auxin signaling. We demonstrate that reorientation of microtubules is not directly triggered by an auxin signal during growth activation. Instead, reorientation is triggered by the activation of the growth process itself and is auxin-independent in its nature. We discuss these findings in the context of previous relevant work, including that on the mechanical regulation of microtubule array orientation.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Hipocótilo/citología , Ácidos Indolacéticos/metabolismo , Microtúbulos/metabolismo , Transducción de Señal , Arabidopsis/genética , Proliferación Celular/efectos de los fármacos , Glicósidos/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Transcripción Genética/efectos de los fármacos
10.
Plant Cell ; 30(3): 700-716, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29511054

RESUMEN

Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clatrina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clatrina/genética , Endocitosis/genética , Endocitosis/fisiología , Unión Proteica , Transporte de Proteínas , Plantones/genética , Plantones/metabolismo
11.
Plant Cell Physiol ; 58(10): 1801-1811, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016942

RESUMEN

Membrane traffic at the trans-Golgi network (TGN) is crucial for correctly distributing various membrane proteins to their destination. Polarly localized auxin efflux proteins, including PIN-FORMED1 (PIN1), are dynamically transported between the endosomes and the plasma membrane (PM) in the plant cells. The intracellular trafficking of PIN1 protein is sensitive to the fungal toxin brefeldin A (BFA), which is known to inhibit guanine nucleotide exchange factors for ADP ribosylation factors (ARF GEFs) such as GNOM. However, the molecular details of the BFA-sensitive trafficking pathway have not been fully revealed. In a previous study, we identified an Arabidopsis mutant BFA-visualized endocytic trafficking defective 3 (ben3) which exhibited reduced sensitivity to BFA in terms of BFA-induced intracellular PIN1 agglomeration. Here, we show that BEN3 encodes a member of BIG family ARF GEFs, BIG2. BEN3/BIG2 tagged with fluorescent proteins co-localized with markers for the TGN/early endosome (EE). Inspection of conditionally induced de novo synthesized PIN1 confirmed that its secretion to the PM is BFA sensitive, and established BEN3/BIG2 as a crucial component of this BFA action at the level of the TGN/EE. Furthermore, ben3 mutation alleviated BFA-induced agglomeration of another TGN-localized ARF GEF, BEN1/MIN7. Taken together, our results suggest that BEN3/BIG2 is an ARF GEF component, which confers BFA sensitivity to the TGN/EE in Arabidopsis.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brefeldino A/farmacología , Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Red trans-Golgi/metabolismo , Factores de Ribosilacion-ADP/genética , Alelos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Compartimento Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clonación Molecular , Codón sin Sentido/genética , Endosomas/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Red trans-Golgi/efectos de los fármacos
12.
Plant Cell ; 27(1): 20-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25604445

RESUMEN

Auxin participates in a multitude of developmental processes, as well as responses to environmental cues. Compared with other plant hormones, auxin exhibits a unique property, as it undergoes directional, cell-to-cell transport facilitated by plasma membrane-localized transport proteins. Among them, a prominent role has been ascribed to the PIN family of auxin efflux facilitators. PIN proteins direct polar auxin transport on account of their asymmetric subcellular localizations. In this review, we provide an overview of the multiple developmental roles of PIN proteins, including the atypical endoplasmic reticulum-localized members of the family, and look at the family from an evolutionary perspective. Next, we cover the cell biological and molecular aspects of PIN function, in particular the establishment of their polar subcellular localization. Hormonal and environmental inputs into the regulation of PIN action are summarized as well.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo
13.
Cell ; 156(4): 691-704, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529374

RESUMEN

Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure. Here, we identified an eight-core-component protein complex, the TPLATE complex, essential for plant growth via its role as major adaptor module for clathrin-mediated endocytosis. This complex consists of evolutionarily unique proteins that associate closely with core endocytic elements. The TPLATE complex is recruited as dynamic foci at the plasma membrane preceding recruitment of adaptor protein complex 2, clathrin, and dynamin-related proteins. Reduced function of different complex components severely impaired internalization of assorted endocytic cargoes, demonstrating its pivotal role in clathrin-mediated endocytosis. Taken together, the TPLATE complex is an early endocytic module representing a unique evolutionary plant adaptation of the canonical eukaryotic pathway for clathrin-mediated endocytosis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitosis , Complejo 2 de Proteína Adaptadora/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Complejos Multiproteicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA