Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nat Genet ; 56(8): 1566-1573, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39103649

RESUMEN

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.


Asunto(s)
Rumiantes , Telómero , Telómero/genética , Animales , Rumiantes/genética , Evolución Molecular , Genoma/genética , Selección Genética , Filogenia , Diploidia
2.
Front Psychiatry ; 15: 1276410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086729

RESUMEN

Aim: To determine the efficacy and safety of pharmacogenomics (PGx)-guided antidepressant prescribing in patients with depression through an umbrella review and updated meta-analysis. Methods: A comprehensive systematic search was conducted on PsycINFO, PubMed, Embase and the Cochrane databases. The pooled effect sizes of randomized controlled trials (RCTs) were expressed as mean differences for continuous data and risk ratios for noncontinuous data. Results: Patients who received PGx-guided medications were 41% to 78% more likely to achieve remission and 20% to 49% more likely to respond to antidepressants than patients receiving treatment-as-usual (TAU). Conclusion: PGx-guided antidepressant prescribing improves the treatment of depression. However, the significance and magnitude of the benefit varies widely between studies and different PGx testing panels. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022321324.

3.
Biomed Pharmacother ; 175: 116767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781863

RESUMEN

Gastrointestinal mucositis (GIM) continues to be a significant issue in the management of abdominal cancer radiation treatments and chemotherapy, causing significant patient discomfort and therapy interruption or even cessation. This review will first focus on radiotherapy induced GIM, providing an understanding of its clinical landscape. Subsequently, the aetiology of GIM will be reviewed, highlighting diverse contributing factors. The cellular and tissue damage and associated molecular responses in GIM will be summarised in the context of the underlying complex biological processes. Finally, available drugs and pharmaceutical therapies will be evaluated, underscoring their insufficiency, and highlighting the need for further research and innovation. This review will emphasize the urgent need for improved pharmacologic therapeutics for GIM, which is a key research priority in oncology.


Asunto(s)
Mucositis , Traumatismos por Radiación , Humanos , Mucositis/tratamiento farmacológico , Mucositis/etiología , Traumatismos por Radiación/tratamiento farmacológico , Animales , Radioterapia/efectos adversos , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/etiología
4.
Elife ; 132024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813868

RESUMEN

Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.


Asunto(s)
Impresión Genómica , Animales , Femenino , Embarazo , Ratones , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Desarrollo Fetal/genética , Placenta/metabolismo , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Sistema de Transporte de Aminoácidos A
5.
Mob DNA ; 15(1): 7, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605364

RESUMEN

Horizontal transfer of transposable elements (HTT) has been reported across many species and the impact of such events on genome structure and function has been well described. However, few studies have focused on reptilian genomes, especially HTT events in Testudines (turtles). Here, as a consequence of investigating the repetitive content of Malaclemys terrapin terrapin (Diamondback turtle) we found a high similarity DNA transposon, annotated in RepBase as hAT-6_XT, shared between other turtle species, ray-finned fishes, and a frog. hAT-6_XT was notably absent in reptilian taxa closely related to turtles, such as crocodiles and birds. Successful invasion of DNA transposons into new genomes requires the conservation of specific residues in the encoded transposase, and through structural analysis, these residues were identified indicating some retention of functional transposition activity. We document six recent independent HTT events of a DNA transposon in turtles, which are known to have a low genomic evolutionary rate and ancient repeats.

6.
PLoS Comput Biol ; 20(2): e1011868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346074

RESUMEN

In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when the effects of homozygosity for recessive mutations are studied in non-isogenic backgrounds, genes located proximal to the mutation on the same chromosome often appear over-represented among those genes identified as differentially expressed (DE). One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect functional responses to the mutation but, instead, result from an unequal distribution of expression quantitative trait loci (eQTLs) between sample groups of mutant or wild-type genotypes. This is problematic because eQTL expression differences are difficult to distinguish from genes that are DE due to functional responses to a mutation. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) are also observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between those sample groups subjected to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting-based approaches. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. Our method for DAR analysis requires only RNA-sequencing data, facilitating its application across new and existing datasets.


Asunto(s)
Sitios de Carácter Cuantitativo , Pez Cebra , Animales , Sitios de Carácter Cuantitativo/genética , Pez Cebra/genética , Perfilación de la Expresión Génica , Genotipo , ARN , Transcriptoma/genética
7.
EMBO Rep ; 25(2): 796-812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177920

RESUMEN

Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Resistencia a la Sequía , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sequías , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Genome Biol ; 24(1): 260, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957683

RESUMEN

Accurate annotation of genes and transposable elements (TEs) is vital for understanding genomes, but current annotation pipelines often misannotate TEs as genes. This study reveals how the general transcription factor II-I repeat domain-containing protein 2 (GTF2IRD2) erroneously annotated DNA transposons in non-mammalian species, as it contains a 3' fused hAT transposase domain. We also demonstrate the generality of this problem by identifying misannotated TEs as genes in other vertebrate genomes. Such misannotations can lead to errors in phylogenetic analyses and wasted time for investigators. The study proposes adding a final TE-check to gene annotation pipelines to mitigate this problem.


Asunto(s)
Elementos Transponibles de ADN , Factores Generales de Transcripción , Animales , Filogenia , Vertebrados/genética , Anotación de Secuencia Molecular
9.
Mol Plant ; 16(8): 1339-1353, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37553833

RESUMEN

Tens of thousands of long non-coding RNAs have been uncovered in plants, but few of them have been comprehensively studied for their biological function and molecular mechanism of their mode of action. Here, we show that the Arabidopsis long non-coding RNA DANA2 interacts with an AP2/ERF transcription factor ERF84 in the cell nucleus and then affects the transcription of JMJ29 that encodes a Jumonji C domain-containing histone H3K9 demethylase. Both RNA sequencing (RNA-seq) and genetic analyses demonstrate that DANA2 positively regulates drought stress responses through JMJ29. JMJ29 positively regulates the expression of ERF15 and GOLS2 by modulation of H3K9me2 demethylation. Accordingly, mutation of JMJ29 causes decreased ERF15 and GOLS2 expression, resulting in impaired drought tolerance, in agreement with drought-sensitive phenotypes of dana2 and erf84 mutants. Taken together, these results demonstrate that DANA2 is a positive regulator of drought response and works jointly with the transcriptional activator ERF84 to modulate JMJ29 expression in plant response to drought.


Asunto(s)
Arabidopsis , ARN Largo no Codificante , Histonas/metabolismo , Resistencia a la Sequía , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/metabolismo
10.
Sci Data ; 10(1): 572, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644152

RESUMEN

Sophora flavescens is a medicinal plant in the genus Sophora of the Fabaceae family. The root of S. flavescens is known in China as Kushen and has a long history of wide use in multiple formulations of Traditional Chinese Medicine (TCM). In this study, we used third-generation Nanopore long-read sequencing technology combined with Hi-C scaffolding technology to de novo assemble the S. flavescens genome. We obtained a chromosomal level high-quality S. flavescens draft genome. The draft genome size is approximately 2.08 Gb, with more than 80% annotated as Transposable Elements (TEs), which have recently and rapidly proliferated. This genome size is ~5x larger than its closest sequenced relative Lupinus albus L. . We annotated 60,485 genes and examined their expression profiles in leaf, stem and root tissues, and also characterised the genes and pathways involved in the biosynthesis of major bioactive compounds, including alkaloids, flavonoids and isoflavonoids. The assembled genome highlights the very different evolutionary trajectories that have occurred in recently diverged Fabaceae, leading to smaller duplicated genomes.


Asunto(s)
Plantas Medicinales , Sophora flavescens , Evolución Biológica , China , Elementos Transponibles de ADN , Fabaceae , Plantas Medicinales/genética , Sophora flavescens/genética , Genoma de Planta
11.
Dev Cell ; 58(13): 1206-1217.e4, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37290444

RESUMEN

In eukaryotes, transcription factors are a crucial element in the regulation of gene expression, and nuclear translocation is the key to the function of transcription factors. Here, we show that the long intergenic noncoding RNA ARTA interacts with an importin ß-like protein, SAD2, through a long noncoding RNA-binding region embedded in the carboxyl terminal, and then it blocks the import of the transcription factor MYB7 into the nucleus. Abscisic acid (ABA)-induced ARTA expression can positively regulate ABI5 expression by fine-tuning MYB7 nuclear trafficking. Therefore, the mutation of arta represses ABI5 expression, resulting in desensitization to ABA, thereby reducing Arabidopsis drought tolerance. Our results demonstrate that lncRNA can hijack a nuclear trafficking receptor to modulate the nuclear import of a transcription factor during plant responses to environmental stimuli.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Carioferinas/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Semillas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo
12.
Methods Mol Biol ; 2607: 45-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36449157

RESUMEN

Transposable elements (TEs) are prevalent genomic components which can replicate as a function of mobilization in eukaryotes. Not only do they alter genome structure, they also play regulatory functions or organize chromatin structure. In addition to vertical parent-to-offspring inheritance, TEs can also horizontally "jump" between species, known as horizontal transposon transfer (HTT). This can rapidly alter the course of genome evolution. In this chapter, we provide a practical framework to detect HTT events. Our HTT detection framework is based on the use of sequence alignment to determine the divergence/conservation profiles of TE families to determine the history of expansion events. In summary, it includes (a) workflow of HTT detection from Ab initio identified TEs; (b) workflow for detecting HTT for specific, curated TEs; and (c) workflow for validating detected HTT candidates. Our framework covers two common scenarios of HTT detection in the modern omics era, and we believe it will serve as a valuable toolbox for the TE and genomics research community.


Asunto(s)
Elementos Transponibles de ADN , Eucariontes , Humanos , Elementos Transponibles de ADN/genética , Genómica , Patrón de Herencia , Alineación de Secuencia
13.
Clin Epigenetics ; 14(1): 183, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36544159

RESUMEN

BACKGROUND: Non-genetic disease inheritance and offspring phenotype are substantially influenced by germline epigenetic programming, including genomic imprinting. Loss of Polycomb Repressive Complex 2 (PRC2) function in oocytes causes non-genetically inherited effects on offspring, including embryonic growth restriction followed by post-natal offspring overgrowth. While PRC2-dependent non-canonical imprinting is likely to contribute, less is known about germline epigenetic programming of non-imprinted genes during oocyte growth. In addition, de novo germline mutations in genes encoding PRC2 lead to overgrowth syndromes in human patients, but the extent to which PRC2 activity is conserved in human oocytes is poorly understood. RESULTS: In this study, we identify a discrete period of early oocyte growth during which PRC2 is expressed in mouse growing oocytes. Deletion of Eed during this window led to the de-repression of 343 genes. A high proportion of these were developmental regulators, and the vast majority were not imprinted genes. Many of the de-repressed genes were also marked by the PRC2-dependent epigenetic modification histone 3 lysine 27 trimethylation (H3K27me3) in primary-secondary mouse oocytes, at a time concurrent with PRC2 expression. In addition, we found H3K27me3 was also enriched on many of these genes by the germinal vesicle (GV) stage in human oocytes, strongly indicating that this PRC2 function is conserved in the human germline. However, while the 343 genes were de-repressed in mouse oocytes lacking EED, they were not de-repressed in pre-implantation embryos and lost H3K27me3 during pre-implantation development. This implies that H3K27me3 is a transient feature that represses a wide range of genes in oocytes. CONCLUSIONS: Together, these data indicate that EED has spatially and temporally distinct functions in the female germline to repress a wide range of developmentally important genes and that this activity is conserved in the mouse and human germlines.


Asunto(s)
Metilación de ADN , Histonas , Oocitos , Complejo Represivo Polycomb 2 , Animales , Ratones , Genes del Desarrollo , Histonas/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
14.
Front Oncol ; 12: 929735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033515

RESUMEN

Mucositis, or damage/injury to mucous membranes of the alimentary, respiratory, or genitourinary tract, is the major side effect associated with anticancer radiotherapies. Because there is no effective treatment for mucositis at present, this is a particular issue as it limits the dose of therapy in cancer patients and significantly affects their quality of life. Gastrointestinal mucositis (GIM) occurs in patients receiving radiotherapies to treat cancers of the stomach, abdomen, and pelvis. It involves inflammation and ulceration of the gastrointestinal (GI) tract causing diarrhea, nausea and vomiting, abdominal pain, and bloating. However, there is currently no effective treatment for this debilitating condition. In this study, we investigated the potential of a type of traditional Chinese medicine (TCM), compound Kushen injection (CKI), as a treatment for GIM. It has previously been shown that major groups of chemical compounds found in CKI have anti-inflammatory effects and are capable of inhibiting the expression of pro-inflammatory cytokines. Intraperitoneal administration of CKI to Sprague Dawley (SD) rats that concurrently received abdominal irradiation over five fractions resulted in reduced severity of GIM symptoms compared to rats administered a vehicle control. Histological examination of the intestinal tissues revealed significantly less damaged villus epithelium in CKI-administered rats that had reduced numbers of apoptotic cells in the crypts. Furthermore, it was also found that CKI treatment led to decreased levels of inflammatory factors including lower levels of interleukin (IL)-1ß and IL-6 as well as myeloperoxidase (MPO)-producing cells in the intestinal mucosa. Together, our data indicate a novel effect of CKI to reduce the symptoms of radiation-induced GIM by inhibiting inflammation in the mucosa and apoptosis of epithelial cells.

16.
Genes (Basel) ; 13(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35205262

RESUMEN

Transposable elements (TEs), also known as jumping genes, are sequences able to move or copy themselves within a genome. As TEs move throughout genomes they often act as a source of genetic novelty, hence understanding TE evolution within lineages may help in understanding environmental adaptation. Studies into the TE content of lineages of mammals such as bats have uncovered horizontal transposon transfer (HTT) into these lineages, with squamates often also containing the same TEs. Despite the repeated finding of HTT into squamates, little comparative research has examined the evolution of TEs within squamates. Here we examine a diverse family of Australo-Melanesian snakes (Hydrophiinae) to examine if the previously identified, order-wide pattern of variable TE content and activity holds true on a smaller scale. Hydrophiinae diverged from Asian elapids ~30 Mya and have since rapidly diversified into six amphibious, ~60 marine and ~100 terrestrial species that fill a broad range of ecological niches. We find TE diversity and expansion differs between hydrophiines and their Asian relatives and identify multiple HTTs into Hydrophiinae, including three likely transferred into the ancestral hydrophiine from fish. These HTT events provide the first tangible evidence that Hydrophiinae reached Australia from Asia via a marine route.


Asunto(s)
Elementos Transponibles de ADN , Elapidae , Animales , Elementos Transponibles de ADN/genética , Ecología , Ecosistema , Elapidae/genética , Mamíferos/genética
17.
Pharmacol Res ; 177: 106076, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074524

RESUMEN

Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology Sections, with contributions from a number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.


Asunto(s)
Productos Biológicos , Farmacología Clínica , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Agentes Inmunomoduladores
18.
Genome Biol Evol ; 13(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894225

RESUMEN

Since the sequencing of the zebra finch genome it has become clear that avian genomes, while largely stable in terms of chromosome number and gene synteny, are more dynamic at an intrachromosomal level. A multitude of intrachromosomal rearrangements and significant variation in transposable element (TE) content have been noted across the avian tree. TEs are a source of genome plasticity, because their high similarity enables chromosomal rearrangements through nonallelic homologous recombination, and they have potential for exaptation as regulatory and coding sequences. Previous studies have investigated the activity of the dominant TE in birds, chicken repeat 1 (CR1) retrotransposons, either focusing on their expansion within single orders, or comparing passerines with nonpasserines. Here, we comprehensively investigate and compare the activity of CR1 expansion across orders of birds, finding levels of CR1 activity vary significantly both between and within orders. We describe high levels of TE expansion in genera which have speciated in the last 10 Myr including kiwis, geese, and Amazon parrots; low levels of TE expansion in songbirds across their diversification, and near inactivity of TEs in the cassowary and emu for millions of years. CR1s have remained active over long periods of time across most orders of neognaths, with activity at any one time dominated by one or two families of CR1s. Our findings of higher TE activity in species-rich clades and dominant families of TEs within lineages mirror past findings in mammals and indicate that genome evolution in amniotes relies on universal TE-driven processes.


Asunto(s)
Pollos , Retroelementos , Animales , Pollos/genética , Elementos Transponibles de ADN , Evolución Molecular , Genoma , Inestabilidad Genómica , Mamíferos/genética , Filogenia , Retroelementos/genética
19.
Biol Lett ; 17(9): 20210342, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34464541

RESUMEN

Transposable elements (TEs) are self-replicating genetic sequences and are often described as important 'drivers of evolution'. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions potentially lead to neutral or harmful outcomes, therefore host genomes have evolved machinery to suppress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonize new genomes, and since new hosts may not be able to regulate subsequent replication, these TEs may proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids approximately 15-25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8-12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.


Asunto(s)
Sustancias Explosivas , Laticauda , Animales , Australia , Elementos Transponibles de ADN , Elapidae , Evolución Molecular
20.
PLoS Genet ; 17(3): e1009461, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33739974

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging as important regulators in plant development, but few of them have been functionally characterized in fruit ripening. Here, we have identified 25,613 lncRNAs from strawberry ripening fruits based on RNA-seq data from poly(A)-depleted libraries and rRNA-depleted libraries, most of which exhibited distinct temporal expression patterns. A novel lncRNA, FRILAIR harbours the miR397 binding site that is highly conserved in diverse strawberry species. FRILAIR overexpression promoted fruit maturation in the Falandi strawberry, which was consistent with the finding from knocking down miR397, which can guide the mRNA cleavage of both FRILAIR and LAC11a (encoding a putative laccase-11-like protein). Moreover, LAC11a mRNA levels were increased in both FRILAIR overexpressing and miR397 knockdown fruits, and accelerated fruit maturation was also found in LAC11a overexpressing fruits. Overall, our study demonstrates that FRILAIR can act as a noncanonical target mimic of miR397 to modulate the expression of LAC11a in the strawberry fruit ripening process.


Asunto(s)
Fragaria/crecimiento & desarrollo , Fragaria/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , ARN Largo no Codificante , ARN de Planta , Edición Génica , Estudios de Asociación Genética , MicroARNs/genética , Modelos Biológicos , Fenotipo , ARN Guía de Kinetoplastida , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA