Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
iScience ; 26(9): 107517, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636078

RESUMEN

Laser desorption/ionization-mass spectrometry (LDI-MS) is introduced as a complementary technique for the analysis of interphases formed at electrode|electrolyte interfaces in lithium ion batteries (LIBs). An understanding of these interphases is crucial for designing interphase-forming electrolyte formulations and increasing battery lifetime. Especially organic species are analyzed more effectively using LDI-MS than with established methodologies. The combination with trapped ion mobility spectrometry and tandem mass spectrometry yields additional structural information of interphase components. Furthermore, LDI-MS imaging reveals the lateral distribution of compounds on the electrode surface. Using the introduced methods, a deeper understanding of the mechanism of action of the established solid electrolyte interphase-forming electrolyte additive 3,4-dimethyloxazolidine-2,5-dione (Ala-N-CA) for silicon/graphite anodes is obtained, and active electrochemical transformation products are unambiguously identified. In the future, LDI-MS will help to provide a deeper understanding of interfacial processes in LIBs by using it in a multimodal approach with other surface analysis methods to obtain complementary information.

2.
Adv Sci (Weinh) ; 9(24): e2201742, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35798310

RESUMEN

Silicon (Si)-based negative electrodes have attracted much attention to increase the energy density of lithium ion batteries (LIBs) but suffer from severe volume changes, leading to continuous re-formation of the solid electrolyte interphase and consumption of active lithium. The pre-lithiation approach with the help of positive electrode additives has emerged as a highly appealing strategy to decrease the loss of active lithium in Si-based LIB full-cells and enable their practical implementation. Here, the use of lithium squarate (Li2 C4 O4 ) as low-cost and air-stable pre-lithiation additive for a LiNi0.6 Mn0.2 Co0.2 O2 (NMC622)-based positive electrode is investigated. The effect of additive oxidation on the electrode morphology and cell electrochemical properties is systematically evaluated. An increase in cycle life of NMC622||Si/graphite full-cells is reported, which grows linearly with the initial amount of Li2 C4 O4 , due to the extra Li+ ions provided by the additive in the first charge. Post mortem investigations of the cathode electrolyte interphase also reveal significant compositional changes and an increased occurrence of carbonates and oxidized carbon species. This study not only demonstrates the advantages of this pre-lithiation approach but also features potential limitations for its practical application arising from the emerging porosity and gas development during decomposition of the pre-lithiation additive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA