Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Med Chem ; 67(14): 11597-11621, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39011823

RESUMEN

Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.


Asunto(s)
Aminopeptidasas , Antígenos de Histocompatibilidad Menor , Animales , Humanos , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Autoinmunidad/efectos de los fármacos , Química Farmacéutica , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/inmunología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , Antígenos de Histocompatibilidad Clase I
2.
Comput Struct Biotechnol J ; 25: 81-90, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38883847

RESUMEN

NanoConstruct is a state-of-the-art computational tool that enables a) the digital construction of ellipsoidal neutral energy minimized nanoparticles (NPs) in vacuum through its graphical user-friendly interface, and b) the calculation of NPs atomistic descriptors. It allows the user to select NP's shape and size by inserting its ellipsoidal axes and rotation angle while the NP material is selected by uploading its Crystallography Information File (CIF). To investigate the stability of materials not yet synthesised, NanoConstruct allows the substitution of the chemical elements of an already synthesized material with chemical elements that belong into the same group and neighbouring rows of the periodic table. The process is divided into three stages: 1) digital construction of the unit cell, 2) digital construction of NP using geometry rules and keeping its stoichiometry and 3) energy minimization of the geometrically constructed NP and calculation of its atomistic descriptors. In this study, NanoConstruct was applied for the investigation of the crystal growth of Zirconia (ZrO2) NPs when in the rutile form. The most stable configuration and the crystal growth route were identified, showing a preferential direction for the crystal growth of ZrO2 in its rutile form. NanoConstruct is freely available through the Enalos Cloud Platform (https://enaloscloud.novamechanics.com/riskgone/nanoconstruct/).

3.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791255

RESUMEN

A robust predictive model was developed using 136 novel peroxisome proliferator-activated receptor delta (PPARδ) agonists, a distinct subtype of lipid-activated transcription factors of the nuclear receptor superfamily that regulate target genes by binding to characteristic sequences of DNA bases. The model employs various structural descriptors and docking calculations and provides predictions of the biological activity of PPARδ agonists, following the criteria of the Organization for Economic Co-operation and Development (OECD) for the development and validation of quantitative structure-activity relationship (QSAR) models. Specifically focused on small molecules, the model facilitates the identification of highly potent and selective PPARδ agonists and offers a read-across concept by providing the chemical neighbours of the compound under study. The model development process was conducted on Isalos Analytics Software (v. 0.1.17) which provides an intuitive environment for machine-learning applications. The final model was released as a user-friendly web tool and can be accessed through the Enalos Cloud platform's graphical user interface (GUI).


Asunto(s)
PPAR delta , Relación Estructura-Actividad Cuantitativa , Programas Informáticos , PPAR delta/agonistas , PPAR delta/química , PPAR delta/metabolismo , Simulación del Acoplamiento Molecular , Humanos , Aprendizaje Automático
4.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727328

RESUMEN

(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant to the diagnosis and treatment of cancer. (2) Methods: A systematic review was performed in electronic databases (PubMed, Scopus, and Wiley Online Library) on December 2023, searching for toxicity assessments of ICNPs of different sizes, coatings, and surface modifications investigated in immortalized human and murine cell lines. The risk of bias in the studies was assessed using the ToxRTool for in vitro studies. (3) Results: Among the selected studies (n = 22), cell viability emerged as the most frequently assessed cellular-level toxicity endpoint. The results of the meta-analysis showed that cell models treated with ICNPs had a reduced cell viability (SMD = -2.531; 95% CI: -2.959 to -2.109) compared to untreated samples. A subgroup analysis was performed due to the high magnitude of heterogeneity (I2 = 77.1%), revealing that ICNP concentration and conjugated ligands are the factors that largely influence toxicity (p < 0.001). (4) Conclusions: A dose-dependent cytotoxicity of ICNP exposure was observed, regardless of the health status of the cell, tested organism, and NP size. Inconsistent reporting of ICNP physicochemical properties was noted, which hinders comparability among the studies. A comprehensive exploration of the available in vivo studies is required in future research to assess the safety of ICNPs' use in bioimaging and cancer treatment.

5.
Comput Struct Biotechnol J ; 25: 47-60, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38646468

RESUMEN

The rapid advance of nanotechnology has led to the development and widespread application of nanomaterials, raising concerns regarding their potential adverse effects on human health and the environment. Traditional (experimental) methods for assessing the nanoparticles (NPs) safety are time-consuming, expensive, and resource-intensive, and raise ethical concerns due to their reliance on animals. To address these challenges, we propose an in silico workflow that serves as an alternative or complementary approach to conventional hazard and risk assessment strategies, which incorporates state-of-the-art computational methodologies. In this study we present an automated machine learning (autoML) scheme that employs dose-response toxicity data for silver (Ag), titanium dioxide (TiO2), and copper oxide (CuO) NPs. This model is further enriched with atomistic descriptors to capture the NPs' underlying structural properties. To overcome the issue of limited data availability, synthetic data generation techniques are used. These techniques help in broadening the dataset, thus improving the representation of different NP classes. A key aspect of this approach is a novel three-step applicability domain method (which includes the development of a local similarity approach) that enhances user confidence in the results by evaluating the prediction's reliability. We anticipate that this approach will significantly expedite the nanosafety assessment process enabling regulation to keep pace with innovation, and will provide valuable insights for the design and development of safe and sustainable NPs. The ML model developed in this study is made available to the scientific community as an easy-to-use web-service through the Enalos Cloud Platform (www.enaloscloud.novamechanics.com/sabydoma/safenanoscope/), facilitating broader access and collaborative advancements in nanosafety.

6.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447786

RESUMEN

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Asunto(s)
Lisofosfolípidos , Neoplasias , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Neoplasias/metabolismo , Sitios de Unión , Sitio Alostérico
7.
Comput Struct Biotechnol J ; 25: 34-46, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38549954

RESUMEN

ASCOT (an acronym derived from Ag-Silver, Copper Oxide, Titanium Oxide) is a user-friendly web tool for digital construction of electrically neutral, energy-minimized spherical nanoparticles (NPs) of Ag, CuO, and TiO2 (both Anatase and Rutile forms) in vacuum, integrated into the Enalos Cloud Platform (https://www.enaloscloud.novamechanics.com/sabydoma/ascot/). ASCOT calculates critical atomistic descriptors such as average potential energy per atom, average coordination number, common neighbour parameter (used for structural classification in simulations of crystalline phases), and hexatic order parameter (which measures how closely the local environment around a particle resembles perfect hexatic symmetry) for both core (over 4 Å from the surface) and shell (within 4 Å of the surface) regions of the NPs. These atomistic descriptors assist in predicting the most stable NP size based on lowest per atom energy and serve as inputs for developing machine learning models to predict the toxicity of these nanomaterials. ASCOT's automated backend requires minimal user input in order to construct the digital NPs: inputs needed are the material type (Ag, CuO, TiO2-Anatase, TiO2-Rutile), target diameter, a Force-Field from a pre-validated list, and the energy minimization parameters, with the tool providing a set of default values for novice users.

8.
Angew Chem Int Ed Engl ; 63(14): e202319157, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339863

RESUMEN

Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.


Asunto(s)
Fibroblastos , Inflamación , Humanos , Fibroblastos/metabolismo , Inflamación/metabolismo , Hipoxia/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
10.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958877

RESUMEN

In this in silico study, we conducted an in-depth exploration of the potential of natural products and antihypertensive molecules that could serve as inhibitors targeting the key proteins of the SARS-CoV-2 virus: the main protease (Mpro) and the spike (S) protein. By utilizing Induced Fit Docking (IFD), we assessed the binding affinities of the molecules under study to these crucial viral components. To further comprehend the stability and molecular interactions of the "protein-ligand" complexes that derived from docking studies, we performed molecular dynamics (MD) simulations, shedding light on the molecular basis of potential drug candidates for COVID-19 treatment. Moreover, we employed Molecular Mechanics Generalized Born Surface Area (MM-GBSA) calculations on all "protein-ligand" complexes, underscoring the robust binding capabilities of rosmarinic acid, curcumin, and quercetin against Mpro, and salvianolic acid b, rosmarinic acid, and quercetin toward the S protein. Furthermore, in order to expand our search for potent inhibitors, we conducted a structure similarity analysis, using the Enalos Suite, based on the molecules that indicated the most favored results in the in silico studies. The Enalos Suite generated 115 structurally similar compounds to salvianolic acid, rosmarinic acid, and quercetin. These compounds underwent IFD calculations, leading to the identification of two salvianolic acid analogues that exhibited strong binding to all the examined binding sites in both proteins, showcasing their potential as multi-target inhibitors. These findings introduce exciting possibilities for the development of novel therapeutic agents aiming to effectively disrupt the SARS-CoV-2 virus lifecycle.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Antihipertensivos/farmacología , SARS-CoV-2 , Productos Biológicos/farmacología , Tratamiento Farmacológico de COVID-19 , Ligandos , Quercetina , Glicoproteína de la Espiga del Coronavirus , Simulación de Dinámica Molecular , Péptido Hidrolasas , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Ácido Rosmarínico
11.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047543

RESUMEN

The discovery and development of new drugs are extremely long and costly processes. Recent progress in artificial intelligence has made a positive impact on the drug development pipeline. Numerous challenges have been addressed with the growing exploitation of drug-related data and the advancement of deep learning technology. Several model frameworks have been proposed to enhance the performance of deep learning algorithms in molecular design. However, only a few have had an immediate impact on drug development since computational results may not be confirmed experimentally. This systematic review aims to summarize the different deep learning architectures used in the drug discovery process and are validated with further in vivo experiments. For each presented study, the proposed molecule or peptide that has been generated or identified by the deep learning model has been biologically evaluated in animal models. These state-of-the-art studies highlight that even if artificial intelligence in drug discovery is still in its infancy, it has great potential to accelerate the drug discovery cycle, reduce the required costs, and contribute to the integration of the 3R (Replacement, Reduction, Refinement) principles. Out of all the reviewed scientific articles, seven algorithms were identified: recurrent neural networks, specifically, long short-term memory (LSTM-RNNs), Autoencoders (AEs) and their Wasserstein Autoencoders (WAEs) and Variational Autoencoders (VAEs) variants; Convolutional Neural Networks (CNNs); Direct Message Passing Neural Networks (D-MPNNs); and Multitask Deep Neural Networks (MTDNNs). LSTM-RNNs were the most used architectures with molecules or peptide sequences as inputs.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Redes Neurales de la Computación , Algoritmos , Descubrimiento de Drogas/métodos
12.
ACS Nano ; 17(7): 6350-6361, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36842071

RESUMEN

As antimicrobials, graphene materials (GMs) may have advantages over traditional antibiotics due to their physical mechanisms of action which ensure less chance of development of microbial resistance. However, the fundamental question as to whether the antibacterial mechanism of GMs originates from parallel interaction or perpendicular interaction, or from a combination of these, remains poorly understood. Here, we show both experimentally and theoretically that GMs with high surface oxygen content (SOC) predominantly attach in parallel to the bacterial cell surface when in the suspension phase. The interaction mode shifts to perpendicular interaction when the SOC reaches a threshold of ∼0.3 (the atomic percent of O in the total atoms). Such distinct interaction modes are highly related to the rigidity of GMs. Graphene oxide (GO) with high SOC is very flexible and thus can wrap bacteria while reduced GO (rGO) with lower SOC has higher rigidity and tends to contact bacteria with their edges. Neither mode necessarily kills bacteria. Rather, bactericidal activity depends on the interaction of GMs with surrounding biomolecules. These findings suggest that variation of SOC of GMs is a key factor driving the interaction mode with bacteria, thus helping to understand the different possible physical mechanisms leading to their antibacterial activity.


Asunto(s)
Grafito , Grafito/farmacología , Especies Reactivas de Oxígeno/metabolismo , Oxígeno , Antibacterianos/farmacología , Bacterias/metabolismo
13.
Eur J Med Chem ; 249: 115130, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702053

RESUMEN

Robust experimental evidence has highlighted the role of Autotaxin (ATX)/Lysophosphatidic acid (LPA) axis not only in the pathogenesis of chronic inflammatory conditions and especially in fibroproliferative diseases but also in several types of cancer. As a result, different series of substrate-, lipid-based and small-molecule ATX inhibitors have been identified thus far by both academia and pharma. The "crowning achievement" of these drug discovery campaigns was the development and entry of the first-in-class ATX inhibitor (ziritaxestat, GLPG-1690) in advanced clinical trials against idiopathic pulmonary fibrosis. Herein, the potency optimization efforts of a new series of Autotaxin inhibitors, namely 2-substituted-2,6-dihydro-4H-thieno[3,4-c]pyrazol-1-substituted amide, is described using a previously identified novel chemical scaffold as a "hit". The mode of inhibition of the most promising ATX inhibitors was investigated, while their cellular activity, aqueous solubility and cytotoxicity were evaluated. Our pharmacological results were corroborated by chemoinformatic tools (molecular docking and molecular dynamics simulations) deployed, to provide insight into the binding mechanism of the synthesized inhibitors to ATX.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias , Humanos , Quimioinformática , Enfermedad Crónica , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/metabolismo
14.
Open Res Eur ; 3: 170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38947422

RESUMEN

Risk governance of nanomaterials and nanotechnologies is traditionally mainly limited to risk assessment, risk management and life cycle assessment. Recent approaches have experimented with widening the scope and including economic, social, and ethical aspects. This paper reports on tests and stakeholder feedback on the use of ethical impact assessment guidelines and tools adapting CEN Workshop Agreement part 2 CWA 17145-2:2017 (E)) to support risk governance of nanomaterials, in the RiskGONE project.

15.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432221

RESUMEN

A freely available "in vitro dosimetry" web application is presented enabling users to predict the concentration of nanomaterials reaching the cell surface, and therefore available for attachment and internalization, from initial dispersion concentrations. The web application is based on the distorted grid (DG) model for the dispersion of engineered nanoparticles (NPs) in culture medium used for in vitro cellular experiments, in accordance with previously published protocols for cellular dosimetry determination. A series of in vitro experiments for six different NPs, with Ag and Au cores, are performed to demonstrate the convenience of the web application for calculation of exposure concentrations of NPs. Our results show that the exposure concentrations at the cell surface can be more than 30 times higher compared to the nominal or dispersed concentrations, depending on the NPs' properties and their behavior in the cell culture medium. Therefore, the importance of calculating the exposure concentration at the bottom of the cell culture wells used for in vitro arrays, i.e., the particle concentration at the cell surface, is clearly presented, and the tool introduced here allows users easy access to such calculations. Widespread application of this web tool will increase the reliability of subsequent toxicity data, allowing improved correlation of the real exposure concentration with the observed toxicity, enabling the hazard potentials of different NPs to be compared on a more robust basis.

16.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232571

RESUMEN

Recent technological innovations in the field of mass spectrometry have supported the use of metabolomics analysis for precision medicine. This growth has been allowed also by the application of algorithms to data analysis, including multivariate and machine learning methods, which are fundamental to managing large number of variables and samples. In the present review, we reported and discussed the application of artificial intelligence (AI) strategies for metabolomics data analysis. Particularly, we focused on widely used non-linear machine learning classifiers, such as ANN, random forest, and support vector machine (SVM) algorithms. A discussion of recent studies and research focused on disease classification, biomarker identification and early diagnosis is presented. Challenges in the implementation of metabolomics-AI systems, limitations thereof and recent tools were also discussed.


Asunto(s)
Inteligencia Artificial , Medicina de Precisión , Algoritmos , Aprendizaje Automático , Medicina de Precisión/métodos , Máquina de Vectores de Soporte
17.
Nat Nanotechnol ; 17(9): 924-932, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982314

RESUMEN

Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of safe-and-sustainable-by-design (SSbD). The biological activity of ENMs is closely related to their physicochemical characteristics, changes in these characteristics may therefore cause changes in the ENMs activity. In this sense, a set of physicochemical characteristics (for example, chemical composition, crystal structure, size, shape, surface structure) creates a unique 'representation' of a given ENM. The usability of these characteristics or nanomaterial descriptors (nanodescriptors) in nanoinformatics methods such as quantitative structure-activity/property relationship (QSAR/QSPR) models, provides exciting opportunities to optimize ENMs at the design stage by improving their functionality and minimizing unforeseen health/environmental hazards. A computational screening of possible versions of novel ENMs would return optimal nanostructures and manage ('design out') hazardous features at the earliest possible manufacturing step. Safe adoption of ENMs on a vast scale will depend on the successful integration of the entire bulk of nanodescriptors extracted experimentally with data from theoretical and computational models. This Review discusses directions for developing appropriate nanomaterial representations and related nanodescriptors to enhance the reliability of computational modelling utilized in designing safer and more sustainable ENMs.


Asunto(s)
Nanoestructuras , Simulación por Computador , Humanos , Nanoestructuras/química , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados
18.
J Cheminform ; 14(1): 57, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002868

RESUMEN

Management of nanomaterials and nanosafety data needs to operate under the FAIR (findability, accessibility, interoperability, and reusability) principles and this requires a unique, global identifier for each nanomaterial. Existing identifiers may not always be applicable or sufficient to definitively identify the specific nanomaterial used in a particular study, resulting in the use of textual descriptions in research project communications and reporting. To ensure that internal project documentation can later be linked to publicly released data and knowledge for the specific nanomaterials, or even to specific batches and variants of nanomaterials utilised in that project, a new identifier is proposed: the European Registry of Materials Identifier. We here describe the background to this new identifier, including FAIR interoperability as defined by FAIRSharing, identifiers.org, Bioregistry, and the CHEMINF ontology, and show how it complements other identifiers such as CAS numbers and the ongoing efforts to extend the InChI identifier to cover nanomaterials. We provide examples of its use in various H2020-funded nanosafety projects.

20.
F1000Res ; 10: 1196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853679

RESUMEN

Nanotoxicology is a relatively new field of research concerning the study and application of nanomaterials to evaluate the potential for harmful effects in parallel with the development of applications. Nanotoxicology as a field spans materials synthesis and characterisation, assessment of fate and behaviour, exposure science, toxicology / ecotoxicology, molecular biology and toxicogenomics, epidemiology, safe and sustainable by design approaches, and chemoinformatics and nanoinformatics, thus requiring scientists to work collaboratively, often outside their core expertise area. This interdisciplinarity can lead to challenges in terms of interpretation and reporting, and calls for a platform for sharing of best-practice in nanotoxicology research. The F1000Research Nanotoxicology collection, introduced via this editorial, will provide a place to share accumulated best practice, via original research reports including no-effects studies, protocols and methods papers, software reports and living systematic reviews, which can be updated as new knowledge emerges or as the domain of applicability of the method, model or software is expanded. This editorial introduces the Nanotoxicology Collection in F1000Research. The aim of the collection is to provide an open access platform for nanotoxicology researchers, to support an improved culture of data sharing and documentation of evolving protocols, biological and computational models, software tools and datasets, that can be applied and built upon to develop predictive models and move towards in silico nanotoxicology and nanoinformatics. Submissions will be assessed for fit to the collection and subjected to the F1000Research open peer review process.


Asunto(s)
Nanoestructuras , Nanoestructuras/toxicidad , Proyectos de Investigación , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA