Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38671866

RESUMEN

Silybin is a natural compound extensively studied for its hepatoprotective, neuroprotective and anticancer properties. Envisioning the enhancement of silybin potential by suitable modifications in its chemical structure, here, a series of new 7-O-alkyl silybins derivatives were synthesized by the Mitsunobu reaction starting from the silybins and tyrosol-based phenols, such as tyrosol (TYR, 3), 3-methoxytyrosol (MTYR, 4), and 3-hydroxytyrosol (HTYR, 5). This research sought to explore the antioxidant and anticancer properties of eighteen new derivatives and their mechanisms. In particular, the antioxidant properties of new derivatives outlined by the DPPH assay showed a very pronounced activity depending on the tyrosyl moiety (HTYR > MTYR >> TYR). A significant contribution of the HTYR moiety was observed for silybins and 2,3-dehydro-silybin-based derivatives. According to the very potent antioxidant activity, 2,3-dehydro-silybin derivatives 15ab, 15a, and 15b exerted the most potent anticancer activity in human prostate cancer PC-3 cells. Furthermore, flow cytometric analysis for cell cycle and apoptosis revealed that 15ab, 15a, and 15b induce strong G1 phase arrest and increase late apoptotic population in PC-3 cells. Additionally, Western blotting for apoptotic marker cleaved caspase-3 confirmed apoptosis induction by these silybin derivatives in PC-3 cells. These findings hold significant importance in the investigation of anticancer properties of silybin derivatives and strongly encourage swift investigation in pre-clinical models and clinical trials.

2.
Mol Carcinog ; 63(6): 1188-1204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506376

RESUMEN

Recent preclinical studies have shown that the intake of nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin and naproxen could be an effective intervention strategy against TMPRSS2-ERG fusion-driven prostate tumorigenesis. Herein, as a follow-up mechanistic study, employing TMPRSS2-ERG (fusion) positive tumors and plasma from TMPRSS2-ERG. Ptenflox/flox mice, we profiled the stage specific proteomic changes (focused on inflammatory circulating and prostate tissue/tumor-specific cytokines, chemokines, and growth factors/growth signaling-associated molecules) that contribute to prostate cancer (PCa) growth and progression in the TMPRSS2-ERG fusion-driven mouse model of tumorigenesis. In addition, the association of the protective effects of NSAIDs (aspirin 1400 ppm and naproxen 400 ppm) with the modulation of these specific molecular pathways was determined. A sandwich Elisa based membrane array-proteome profiler identifying 111 distinct signaling molecules was employed. Overall, the plasma and prostate tissue sample analyses identified 54 significant and differentially expressed cytokines, chemokines, and growth factors/growth signaling-associated molecules between PCa afflicted mice (TMPRSS2-ERG. Ptenflox/flox, age-matched noncancerous controls, NSAIDs-supplemented and no-drug controls). Bioinformatic analysis of the array outcomes indicated that the protective effect of NSAIDs was associated with reduced expression of (a) tumor promoting inflammatory molecules (M-CSF, IL-33, CCL22, CCL12, CX3CL1, CHI3L1, and CD93), (b) growth factors- growth signaling-associated molecules (Chemerin, FGF acidic, Flt-3 ligand, IGFBP-5, and PEDF), and (c) tumor microenvironment/stromal remodeling proteins MMP2 and MMP9. Overall, our findings corroborate the pathological findings that protective effects of NSAIDs in TMPSS2-ERG fusion-driven prostate tumorigenesis are associated with antiproliferative and anti-inflammatory effects and possible modulation of the immune cell enriched microenvironment.


Asunto(s)
Antiinflamatorios no Esteroideos , Aspirina , Naproxeno , Neoplasias de la Próstata , Animales , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Ratones , Naproxeno/farmacología , Proteómica/métodos , Inflamación/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Próstata/patología , Próstata/metabolismo , Próstata/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteoma/metabolismo , Humanos , Citocinas/metabolismo , Citocinas/sangre
3.
Toxicol Appl Pharmacol ; 483: 116834, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266871

RESUMEN

PURPOSE: Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.


Asunto(s)
Sustancias para la Guerra Química , Lesiones de la Cornea , Gas Mostaza , Animales , Conejos , Gas Mostaza/toxicidad , Sustancias para la Guerra Química/toxicidad , Mediadores de Inflamación/metabolismo , Actinas/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Córnea/metabolismo , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Citoesqueleto de Actina/metabolismo , Dexametasona/efectos adversos
4.
J Pharmacol Exp Ther ; 388(2): 469-483, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37316330

RESUMEN

Sulfur mustard (SM) is an ominous chemical warfare agent. Eyes are extremely susceptible to SM toxicity; injuries include inflammation, fibrosis, neovascularization (NV), and vision impairment/blindness, depending on the exposure dosage. Effective countermeasures against ocular SM toxicity remain elusive and are warranted during conflicts/terrorist activities and accidental exposures. We previously determined that dexamethasone (DEX) effectively counters corneal nitrogen mustard toxicity and that the 2-hour postexposure therapeutic window is most beneficial. Here, the efficacy of two DEX dosing frequencies [i.e., every 8 or 12 hours (initiated, as previously established, 2 hours after exposure)] until 28 days after SM exposure was assessed. Furthermore, sustained effects of DEX treatments were observed up to day 56 after SM exposure. Corneal clinical assessments (thickness, opacity, ulceration, and NV) were performed at the day 14, 28, 42, and 56 post-SM exposure time points. Histopathological assessments of corneal injuries (corneal thickness, epithelial degradation, epithelial-stromal separation, inflammatory cell, and blood vessel counts) using H&E staining and molecular assessments (COX-2, MMP-9, VEGF, and SPARC expressions) were performed at days 28, 42, and 56 after SM exposure. Statistical significance was assessed using two-way ANOVA, with Holm-Sidak post hoc pairwise multiple comparisons; significance was established if P < 0.05 (data represented as the mean ± S.E.M.). DEX administration every 8 hours was more potent than every 12 hours in reversing ocular SM injury, with the most pronounced effects observed at days 28 and 42 after SM exposure. These comprehensive results are novel and provide a comprehensive DEX treatment regimen (therapeutic-window and dosing-frequency) for counteracting SM-induced corneal injuries. SIGNIFICANCE STATEMENT: The study aims to establish a dexamethasone (DEX) treatment regimen by comparing the efficacy of DEX administration at 12 versus 8 hours initiated 2 hours after exposure. DEX administration every 8 hours was more effective in reversing sulfur mustard (SM)-induced corneal injuries. SM injury reversal during DEX administration (initial 28 days after exposure) and sustained [further 28 days after cessation of DEX administration (i.e., up to 56 days after exposure)] effects were assessed using clinical, pathophysiological, and molecular biomarkers.


Asunto(s)
Sustancias para la Guerra Química , Lesiones de la Cornea , Gas Mostaza , Animales , Conejos , Gas Mostaza/toxicidad , Gas Mostaza/metabolismo , Córnea , Sustancias para la Guerra Química/toxicidad , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Dexametasona/farmacología
5.
J Pharmacol Exp Ther ; 388(2): 484-494, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37474260

RESUMEN

Sulfur mustard (SM), a vesicating agent first used during World War I, remains a potent threat as a chemical weapon to cause intentional/accidental chemical emergencies. Eyes are extremely susceptible to SM toxicity. Nitrogen mustard (NM), a bifunctional alkylating agent and potent analog of SM, is used in laboratories to study mustard vesicant-induced ocular toxicity. Previously, we showed that SM-/NM-induced injuries (in vivo and ex vivo rabbit corneas) are reversed upon treatment with dexamethasone (DEX), a US Food and Drug Administration-approved, steroidal anti-inflammatory drug. Here, we optimized NM injuries in ex vivo human corneas and assessed DEX efficacy. For injury optimization, one cornea (randomly selected from paired eyes) was exposed to NM: 100 nmoles for 2 hours or 4 hours, and 200 nmoles for 2 hours, and the other cornea served as a control. Injuries were assessed 24 hours post NM-exposure. NM 100 nmoles exposure for 2 hours was found to cause optimal corneal injury (epithelial thinning [∼69%]; epithelial-stromal separation [6-fold increase]). In protein arrays studies, 24 proteins displayed ≥40% change in their expression in NM exposed corneas compared with controls. DEX administration initiated 2 hours post NM exposure and every 8 hours thereafter until 24 hours post-exposure reversed NM-induced corneal epithelial-stromal separation [2-fold decrease]). Of the 24 proteins dysregulated upon NM exposure, six proteins (delta-like canonical Notch ligand 1, FGFbasic, CD54, CCL7, endostatin, receptor tyrosine-protein kinase erbB-4) associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, showed significant reversal upon DEX treatment (Student's t test; P ≤ 0.05). Complementing our animal model studies, DEX was shown to mitigate vesicant-induced toxicities in ex vivo human corneas. SIGNIFICANCE STATEMENT: Nitrogen mustard (NM) exposure-induced injuries were optimized in an ex vivo human cornea culture model and studies were carried out at 24 h post 100 nmoles NM exposure. Dexamethasone (DEX) administration (started 2 h post NM exposure and every 8 h thereafter) reversed NM-induced corneal injuries. Molecular mediators of DEX action were associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, indicating DEX aids wound healing via reversing vesicant-induced neovascularization (delta-like canonical Notch ligand 1 and FGF basic) and leukocyte infiltration (CD54 and CCL7).


Asunto(s)
Sustancias para la Guerra Química , Lesiones de la Cornea , Gas Mostaza , Animales , Humanos , Conejos , Mecloretamina/toxicidad , Irritantes/efectos adversos , Sustancias para la Guerra Química/toxicidad , Ligandos , Córnea , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Gas Mostaza/toxicidad , Dexametasona/farmacología , Dexametasona/uso terapéutico
6.
Free Radic Biol Med ; 209(Pt 2): 265-281, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38088264

RESUMEN

Phenylarsine oxide (PAO), an analog of lewisite, is a highly toxic trivalent arsenical and a potential chemical warfare agent. PAO-induced toxicity has been studied in lung, liver, and skin tissues. Nevertheless, very few studies have been published to comprehend the impact of PAO-induced toxicity on ocular tissues, even though eyes are uniquely vulnerable to injury by vesicants. Notably, arsenical vesicants such as lewisite have been shown to cause edema of eyelids, inflammation, massive corneal necrosis, and blindness. Accordingly, human corneal epithelial cells were used to study the effects of PAO exposure. PAO (100 and 200 nM) induced significant oxidative stress in corneal epithelial cells. Simultaneous treatment with N-acetyl-l-cysteine (NAC), an FDA-approved antioxidant, reversed the PAO-induced toxicity in human corneal epithelial cells. Furthermore, oxidative stress induction by PAO was accompanied by unfolded protein response (UPR) signaling activation and ferroptotic cell death. Further, to validate the findings of our in vitro studies, we optimized injury biomarkers and developed an ex vivo rabbit corneal culture model of PAO exposure. Investigations using PAO in ex vivo rabbit corneas revealed similar results. PAO (5 or 10 µg) for 3, 5, and 10 min caused moderate to extensive corneal epithelial layer degradation and reduced the epithelial layer thickness in a concentration- and time-dependent manner. Similar to human corneal cells, injuries by PAO in ex vivo cultured rabbit corneas were also associated with elevated oxidative stress, UPR signaling, and ferroptosis induction. NAC mitigated PAO-induced corneal injuries in rabbit ex vivo cornea culture as well. The reversal of PAO toxicity upon NAC treatment observed in our studies could be attributed to its antioxidant properties. These findings suggest that PAO exposure can cause significant corneal injury and highlight the need for further mechanistic studies to better understand the pathobiology of different arsenical vesicants, including PAO and lewisite.


Asunto(s)
Arsenicales , Lesiones de la Cornea , Animales , Humanos , Conejos , Acetilcisteína/farmacología , Antioxidantes/farmacología , Irritantes , Lesiones de la Cornea/inducido químicamente , Estrés Oxidativo , Respuesta de Proteína Desplegada , Muerte Celular
7.
Exp Eye Res ; 236: 109672, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797797

RESUMEN

Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-ß-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.


Asunto(s)
Arsenicales , Lesiones de la Cornea , Animales , Conejos , Irritantes/efectos adversos , Irritantes/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Córnea/metabolismo , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/metabolismo , Arsenicales/efectos adversos , Arsenicales/metabolismo , Inflamación/metabolismo , Nucleótidos/efectos adversos , Nucleótidos/metabolismo , Lípidos
8.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894421

RESUMEN

The consumption of the non-steroidal anti-inflammatory drug (NSAID) aspirin is associated with a significant reduction in the risk of developing TMPRSS2-ERG (fusion)-positive prostate cancer (PCa) compared to fusion-negative PCa in population-based case-control studies; however, no extensive preclinical studies have been conducted to investigate and confirm these protective benefits. Thus, the focus of this study was to determine the potential usefulness of aspirin and another NSAID, naproxen, in PCa prevention, employing preclinical models of both TMPRSS2-ERG (fusion)-driven (with conditional deletion of Pten) and non-TMPRSS2-ERG-driven (Hi-Myc+/- mice) PCa. Male mice (n = 25 mice/group) were fed aspirin- (700 and 1400 ppm) and naproxen- (200 and 400 ppm) supplemented diets from (a) 6 weeks until 32 weeks of Hi-Myc+/- mice age; and (b) 1 week until 20 weeks post-Cre induction in the fusion model. In all NSAID-fed groups, compared to no-drug controls, there was a significant decrease in higher-grade adenocarcinoma incidence in the TMPRSS2-ERG (fusion)-driven PCa model. Notably, there were no moderately differentiated (MD) adenocarcinomas in the dorsolateral prostate of naproxen groups, and its incidence also decreased by ~79-91% in the aspirin cohorts. In contrast, NSAIDs showed little protective effect against prostate tumorigenesis in Hi-Myc+/- mice, suggesting that NSAIDs exert a specific protective effect against TMPRSS2-ERG (fusion)-driven PCa.

9.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077751

RESUMEN

Herein, we assessed the stage-specific efficacy of inositol hexaphosphate (IP6, phytic acid), a bioactive food component, on prostate cancer (PCa) growth and progression in a transgenic mouse model of prostate cancer (TRAMP). Starting at 4, 12, 20, and 30 weeks of age, male TRAMP mice were fed either regular drinking water or 2% IP6 in water for ~8-15 weeks. Pathological assessments at study endpoint indicated that tumor grade is arrested at earlier stages by IP6 treatment; IP6 also prevented progression to more advanced forms of the disease (~55-70% decrease in moderately and poorly differentiated adenocarcinoma incidence was observed in advanced stage TRAMP cohorts). Next, we determined whether the protective effects of IP6 are mediated via its effect on the expansion of the cancer stem cells (CSCs) pool; results indicated that the anti-PCa effects of IP6 are associated with its potential to eradicate the PCa CSC pool in TRAMP prostate tumors. Furthermore, in vitro assays corroborated the above findings as IP6 decreased the % of floating PC-3 prostaspheres (self-renewal of CSCs) by ~90%. Together, these findings suggest the multifaceted chemopreventive-translational potential of IP6 intervention in suppressing the growth and progression of PCa and controlling this malignancy at an early stage.

10.
J Tradit Complement Med ; 12(3): 287-301, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35493312

RESUMEN

Background and aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion: BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.

11.
Mol Carcinog ; 61(7): 717-734, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452553

RESUMEN

In the present study, we performed a comparative stage-specific pathological and molecular marker evaluation of TMPRSS2-ERG fusion and PTEN loss-driven (TMPRSS2-ERG. Ptenflox/flox ) versus non-fusion-driven prostate tumorigenesis (Hi-Myc) in mice. Anterior, ventral, and dorsolateral prostates were collected from mice at different ages (or time points post-Cre induction). Results indicated that growth and progression of prostatic intraepithelial lesions to adenocarcinoma stages occurred in both mice models albeit at different rates. In the TMPRSS2-ERG. Ptenflox/flox mice, the initiation of tumorigenesis was slow, but subsequent progression through different stages became increasingly faster. Adenocarcinoma stage was reached early on; however, no high-grade undifferentiated tumors were observed. Conversely, in the Hi-Myc+/- mice, tumorigenesis initiation was rapid; however, progression through different stages was relatively slower and it took a while to reach the more aggressive phenotype stage. Nevertheless, at the advanced stages in the Hi-Myc+/- mice, high-grade undifferentiated tumors were observed compared to the later stage tumors observed in the fusion-driven TMPRSS2-ERG. Ptenflox/flox mice. These results were corroborated by the stage specific-pattern in the molecular expression of proliferation markers (PCNA and c-Myc); androgen receptor (AR); fusion-resultant overexpression of ERG; Prostein (SLC45-A3); and angiogenesis marker (CD-31). Importantly, there was a significant increase in immune cell infiltrations, which increased with the stage of tumorigenesis, in the TMPRSS2-ERG fusion-positive tumors relative to fusion negative tumors. Together, these findings are both novel and highly significant in establishing a working preclinical model for evaluating the efficacy of interventions during different stages of tumorigenesis in TMPRSS2-ERG fusion-driven PCa.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Adenocarcinoma/genética , Animales , Carcinogénesis/patología , Humanos , Masculino , Ratones , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Serina Endopeptidasas/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
12.
Carcinogenesis ; 43(6): 557-570, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35184170

RESUMEN

The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.


Asunto(s)
Carcinoma Basocelular , Neoplasias Cutáneas , Animales , Carcinoma Basocelular/tratamiento farmacológico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/prevención & control , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Receptor Patched-1/genética , Silibina/farmacología , Silibina/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/prevención & control , Rayos Ultravioleta/efectos adversos
13.
Toxicol Appl Pharmacol ; 437: 115904, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35108561

RESUMEN

Nitrogen mustard (NM) is an analogue of the potent vesicating agent sulfur mustard, with well-established ocular injury models in rabbit eyes to study vesicant-induced ocular toxicity. The effects of NM-exposure to eyes may include irritation, redness, inflammation, fibrosis, epithelial degradation, blurred vision, partial/complete blindness, which may be temporary or permanent, depending on the route, duration, and dosage of exposure. Effective countermeasures against vesicant exposure are presently not available and are warranted in case of any terrorist activity or accidental leakage from stockpiles. Herein, our focus was to evaluate whether dexamethasone (DEX), an FDA approved potent corticosteroid with documented anti-inflammatory activities, could be an effective treatment modality. Accordingly, utilizing NM-induced corneal injuries in rabbit ocular in vivo model, we examined and compared the efficacy of DEX treatments when administration was started at early (2 h), intermediate (4 h), and late (6 h) therapeutic windows of intervention after NM-exposure and administered every 8 h thereafter. The effects of NM-exposure and DEX treatments were evaluated on clinical (corneal opacity, ulceration, and neovascularization), biological (epithelial thickness, epithelial-stromal separation, blood vessels density, and inflammatory cell and keratocyte counts) and molecular (COX-2 and VEGF expression) parameters, at day 1, 3, 7 and 14. Results indicated that DEX treatment markedly and effectively reversed the NM-induced injury markers in rabbit corneas. Early administration of DEX at 2 h was found to be most effective in reversing NM-induced corneal injuries, followed by DEX 4 h and DEX 6 h administration initiation, indicating that DEX has best efficacy at the early therapeutic window in our study model.


Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Dexametasona/uso terapéutico , Mecloretamina/toxicidad , Animales , Biomarcadores , Irritantes/toxicidad , Masculino , Conejos
14.
PLoS One ; 16(10): e0258503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34637469

RESUMEN

Sulfur mustard (SM) is a cytotoxic, vesicating, chemical warfare agent, first used in 1917; corneas are particularly vulnerable to SM exposure. They may develop inflammation, ulceration, neovascularization (NV), impaired vision, and partial/complete blindness depending upon the concentration of SM, exposure duration, and bio-physiological conditions of the eyes. Comprehensive in vivo studies have established ocular structural alterations, opacity, NV, and inflammation upon short durations (<4 min) of SM exposure. In this study, detailed analyses of histopathological alterations in corneal structure, keratocytes, inflammatory cells, blood vessels, and expressions of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and cytokines were performed in New Zealand white rabbits, in a time-dependent manner till 28 days, post longer durations (5 and 7 min) of ocular SM exposure to establish quantifiable endpoints of injury and healing. Results indicated that SM exposure led to duration-dependent increases in corneal thickness, opacity, ulceration, epithelial-stromal separation, and epithelial degradation. Significant increases in NV, keratocyte death, blood vessels, and inflammatory markers (COX-2, MMP-9, VEGF, and interleukin-8) were also observed for both exposure durations compared to the controls. Collectively, these findings would benefit in temporal delineation of mechanisms underlying SM-induced corneal toxicity and provide models for testing therapeutic interventions.


Asunto(s)
Biomarcadores/metabolismo , Sustancias para la Guerra Química/toxicidad , Córnea/patología , Lesiones de la Cornea/etiología , Gas Mostaza/toxicidad , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Supervivencia Celular/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo , Lesiones de la Cornea/metabolismo , Queratocitos de la Córnea/citología , Queratocitos de la Córnea/efectos de los fármacos , Queratocitos de la Córnea/metabolismo , Ciclooxigenasa 2/metabolismo , Interleucina-8/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Conejos
15.
Bioorg Med Chem ; 42: 116249, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126286

RESUMEN

Curcumin is a bioactive natural compound with a wide range of pharmacological properties, including antitumor activity; however, its clinical application has been limited because of its low solubility, stability, and bioavailability. In this study, a solid phase approach was proposed for the combinatorial synthesis of a mini library of the mimics of curcumin in good purity and yield. The non-effective findings in pancreatic cancer cells switched to strong growth inhibition and cell death efficacy for PC3 prostate cancer cells, and mimic 9, in which tyrosol (TYR) and homovanillyl alcohol (HVA) units were linked by a phosphodiester bond, was quite effective not only in cell growth inhibition but also in causing strong cell death under the study conditions and treatments that were not effective in PANC1 cells. The results got more exciting when we also consider the findings in SW480 human colorectal carcinoma cell line, where the growth inhibitor effects were more in line with that of the PC3 cells, but the lack of cell death effect was more in line with the PANC1 cells.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Técnicas de Síntesis en Fase Sólida , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
J Cancer Prev ; 26(4): 266-276, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35047453

RESUMEN

Given the high rates of incidence and mortality associated with pancreatic cancer (PanC), there is a need to develop alternative strategies to target PanC. Recent studies have demonstrated that fruits of bitter melon (Momordica charantia) exhibit strong anticancer efficacy against PanC. However, the comparative effects of different bitter melon varieties have not been investigated. This has important implications, given that several bitter melon cultivars are geographically available but their differential effects are not known; and that on a global level, individuals could consume different bitter melon varieties sourced from different cultivars for anti-PanC benefits. Considering these shortcomings, in the present study, comparative pre-clinical anti-PanC studies have been conducted using lyophilized-juice and aqueous-methanolic extracts of the two most widely consumed but geographically diverse bitter melon varieties (Chinese [bitter melon juice; BMJ] and Indian [bitter melon extract; BME] variants). We observed that both BMJ and BME possess comparable efficacy against PanC growth and progression; specifically, these preparations have the potential to (a) inhibit PanC cell proliferation and induce cell death; (b) suppress PanC tumor growth, proliferation, and induce apoptosis; (c) restrict capillary tube formation by human umbilical vein endothelial cells, and decrease angiogenesis in PanC tumor xenografts. Thus, given the comparable pre-clinical anti-PanC efficacy of bitter melon cultivars, the geographical non-availability of a certain cultivar should not be a limiting factor in selecting a variant for moving forward for future clinical use/clinical trials either as a preventive or a therapeutic alternative for targeting PanC.

17.
Mol Carcinog ; 59(10): 1227-1240, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32816368

RESUMEN

Chemoresistance to gemcitabine (GEM)-a frontline chemotherapeutic, resulting from its dysfunctional uptake and metabolism in cancer cells, is a major contributing factor for failed therapy in pancreatic cancer (PanC) patients. Therefore, there is an urgent need for agents that could reverse GEM resistance and allow continued chemosensitivity to the drug. We employed natural nontoxic agent (with anti-PanC potential) bitter melon juice (BMJ) and GEM to examine their combinatorial benefits against tumorigenesis of PanC patient-derived xenograft (PDX)-pancreatic ductal adenocarcinomas explants PDX272 (wild-type KRAS), PDX271 (mutant KRAS and SMAD4), and PDX266 (mutant KRAS). Anti-PanC efficacy of single agents vs combination in the three tumor explants, both at the end of active dosing regimen and following a drug-washout phase were compared. In animal studies, GEM alone treatment significantly inhibited PDX tumor growth, but effects were not sustained, as GEM-treated tumors exhibited regrowth posttreatment termination. However, combination-regimen displayed enhanced and sustained efficacy. Mechanistic assessments revealed that overcoming GEM resistance by coadministration with BMJ was possibly due to modulation of GEM transport/metabolism pathway molecules (ribonucleotide reductase regulatory subunit M1, human equilibrative nucleoside transporter 1, and deoxycytidine kinase). Study outcomes, highlighting significantly higher and sustained efficacy of GEM in combination with BMJ, make a compelling case for a clinical trial in PanC patients, wherein BMJ could be combined with GEM to target and overcome GEM resistance. In addition, given their specific effectiveness against KRAS-mutant tumors, this combination could be potentially beneficial to a broader PanC patient population.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Momordica charantia/química , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Desoxicitidina/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
18.
Mol Carcinog ; 59(3): 323-332, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31943365

RESUMEN

Approximately, 30 000 men die from prostate cancer (PCa) every year in the United States, mainly due to the metastasis. Thus, the key events associated with PCa metastasis are under rigorous investigation, with recent studies showing that preparation of pre-metastatic niches (PMN) in distant organs is an important step. However, the molecular basis for PMN preparation is still unclear. Hypoxia in primary tumors promotes aggressiveness; however, its precise role in metastasis is not clear. We recently reported that exosomes secreted by PCa cells under hypoxia promote stemness and invasiveness in naïve PCa cells; however, whether these extracellular vesicles also influence PMN remains unknown. In the present study, we isolated exosomes from human PCa PC3 cells under normoxic (21% O2 , exosomes secreted under normoxic condition [ExoNormoxic ]) and hypoxic (1% O2 , exosomes secreted under hypoxic condition [ExoHypoxic ]) conditions, and characterized their effect (10 µg exosomes, intraperitoneal (IP) treatment every 48 hours for 4 weeks) on key biomarkers associated with PMN in nude mice. Whole animal fluorescence imaging showed that ExoHypoxic treatment promotes matrix metalloproteinases (MMPs) activity in several putative metastatic sites. Histological studies confirmed that ExoHypoxic treatment enhanced the level of MMP2, MMP9, and extracellular matrix proteins (fibronectin and collagen) as well as increased the number of CD11b+ cells at selective PMN sites. Furthermore, proteomic profiling of exosomes by liquid chromatography/mass spectrometry identified cargo proteins in ExoNormoxic and ExoHypoxic as well as distinct canonical pathways targeted by them. These results suggest that exosomes secreted by PCa cells under hypoxia plausibly remodel distant PMN, and thus, could be a potential target to control metastatic PCa.


Asunto(s)
Exosomas/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Activación Enzimática , Exosomas/patología , Humanos , Masculino , Ratones Desnudos , Metástasis de la Neoplasia/patología , Células PC-3 , Próstata/citología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Hipoxia Tumoral
19.
Toxicol Lett ; 322: 1-11, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31884112

RESUMEN

Chloropicrin (CP), a warfare agent now majorly used as a soil pesticide, is a strong irritating and lacrimating compound with devastating toxic effects. To elucidate the mechanism of its ocular toxicity, toxic effects of CP (0-100 µM) were studied in primary human corneal epithelial (HCE) cells. CP exposure resulted in reduced HCE cell viability and increased apoptotic cell death with an up-regulation of cleaved caspase-3 and poly ADP ribose polymerase indicating their contribution in CP-induced apoptotic cell death. Following CP exposure, cells exhibited increased expression of heme oxygenase-1, and phosphorylation of H2A.X and p53 as well as 4-hydroxynonenal adduct formation, suggesting oxidative stress, DNA damage and lipid peroxidation. CP also caused increases in mitogen activated protein kinase-c-Jun N-terminal kinase and inflammatory mediator cyclooxygenase-2. Proteomic analysis revealed an increase in the carbonylation of 179 proteins and enrichment of pathways (including proteasome pathway and catabolic process) in HCE cells following CP exposure. CP-induced oxidative stress and lipid peroxidation can enhance protein carbonylation, prompting alterations in corneal epithelial proteins as well as perturbing signaling pathways resulting in toxic effects. Pathways and major processes identified following CP exposure could be lead-hit targets for further biochemical and molecular characterization as well as therapeutic intervention.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Epitelio Corneal/efectos de los fármacos , Hidrocarburos Clorados/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/toxicidad , Carbonilación Proteica/efectos de los fármacos , Caspasa 3/metabolismo , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Daño del ADN , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Hemo-Oxigenasa 1/metabolismo , Histonas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Peroxidación de Lípido , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
20.
Carcinogenesis ; 40(9): 1164-1176, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31194859

RESUMEN

The established role of bitter melon juice (BMJ), a natural product, in activating master metabolic regulator adenosine monophosphate-activated protein kinase in pancreatic cancer (PanC) cells served as a basis for pursuing deeper investigation into the underlying metabolic alterations leading to BMJ efficacy in PanC. We investigated the comparative metabolic profiles of PanC cells with differential KRAS mutational status on BMJ exposure. Specifically, we employed nuclear magnetic resonance (NMR) metabolomics and in vivo imaging platforms to understand the relevance of altered metabolism in PanC management by BMJ. Multinuclear NMR metabolomics was performed, as a function of time, post-BMJ treatment followed by partial least square discriminant analysis assessments on the quantitative metabolic data sets to visualize the treatment group clustering; altered glucose uptake, lactate export and energy state were identified as the key components responsible for cell death induction. We next employed PANC1 xenograft model for assessing in vivo BMJ efficacy against PanC. Positron emission tomography ([18FDG]-PET) and magnetic resonance imaging on PANC1 tumor-bearing animals reiterated the in vitro results, with BMJ-associated significant changes in tumor volumes, tumor cellularity and glucose uptake. Additional studies in BMJ-treated PanC cells and xenografts displayed a strong decrease in the expression of glucose and lactate transporters GLUT1 and MCT4, respectively, supporting their role in metabolic changes by BMJ. Collectively, these results highlight BMJ-induced modification in PanC metabolomics phenotype and establish primarily lactate efflux and glucose metabolism, specifically GLUT1 and MCT4 transporters, as the potential metabolic targets underlying BMJ efficacy in PanC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA