Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Mol Life Sci ; 81(1): 251, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847937

RESUMEN

The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Inestabilidad Genómica , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Dominios Proteicos , Estabilidad Proteica , Mutación , Línea Celular , ADN Helicasas
2.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614192

RESUMEN

KRAS is the most frequently mutated oncogene associated with the genesis and progress of pancreatic, lung and colorectal (CRC) tumors. KRAS has always been considered as a therapeutic target in cancer but until now only two compounds that inhibit one specific KRAS mutation have been approved for clinical use. In this work, by molecular dynamics and a docking process, we describe a new compound (P14B) that stably binds to a druggable pocket near the α4-α5 helices of the allosteric domain of KRAS. This region had previously been identified as the binding site for calmodulin (CaM). Using surface plasmon resonance and pulldown analyses, we prove that P14B binds directly to oncogenic KRAS thus competing with CaM. Interestingly, P14B favors oncogenic KRAS interaction with BRAF and phosphorylated C-RAF, and increases downstream Ras signaling in CRC cells expressing oncogenic KRAS. The viability of these cells, but not that of the normal cells, is impaired by P14B treatment. These data support the significance of the α4-α5 helices region of KRAS in the regulation of oncogenic KRAS signaling, and demonstrate that drugs interacting with this site may destine CRC cells to death by increasing oncogenic KRAS downstream signaling.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Muerte Celular , Mutación
3.
Sci Rep ; 12(1): 15810, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138080

RESUMEN

Oncogenic RAS proteins are important for driving tumour formation, and for maintenance of the transformed phenotype, and thus their relevance as a cancer therapeutic target is undeniable. We focused here on obtaining peptidomimetics, which have good pharmacological properties, to block Ras-effector interaction. Computational analysis was used to identify hot spots of RAS relevant for these interactions and to screen a library of peptidomimetics. Nine compounds were synthesized and assayed for their activity as RAS inhibitors in cultured cells. Most of them induced a reduction in ERK and AKT activation by EGF, a marker of RAS activity. The most potent inhibitor disrupted Raf and PI3K interaction with oncogenic KRAS, corroborating its mechanism of action as an inhibitor of protein-protein interactions, and thus validating our computational methodology. Most interestingly, improvement of one of the compounds allowed us to obtain a peptidomimetic that decreased the survival of pancreatic cancer cell lines harbouring oncogenic KRAS.


Asunto(s)
Neoplasias Pancreáticas , Peptidomiméticos , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Peptidomiméticos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/genética
4.
PLoS One ; 17(8): e0266645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35969531

RESUMEN

Solving the problems that replication forks encounter when synthesizing DNA is essential to prevent genomic instability. Besides their role in DNA repair in the G2 phase, several homologous recombination proteins, specifically RAD51, have prominent roles in the S phase. Using different cellular models, RAD51 has been shown not only to be present at ongoing and arrested replication forks but also to be involved in nascent DNA protection and replication fork restart. Through pharmacological inhibition, here we study the specific role of RAD51 in the S phase. RAD51 inhibition in non-transformed cell lines did not have a significant effect on replication fork progression under non-perturbed conditions, but when the same cells were subjected to replication stress, RAD51 became necessary to maintain replication fork progression. Notably, the inhibition or depletion of RAD51 did not compromise fork integrity when subjected to hydroxyurea treatment. RAD51 inhibition also did not decrease the ability to restart, but rather compromised fork progression during reinitiation. In agreement with the presence of basal replication stress in human colorectal cancer cells, RAD51 inhibition reduced replication fork speed in these cells and increased γH2Ax foci under control conditions. These alterations could have resulted from the reduced association of DNA polymerase α to chromatin, as observed when inhibiting RAD51. It may be possible to exploit the differential dependence of non-transformed cells versus colorectal cancer cells on RAD51 activity under basal conditions to design new therapies that specifically target cancer cells.


Asunto(s)
Neoplasias Colorrectales , Recombinasa Rad51 , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
5.
Oncogene ; 40(38): 5730-5740, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34333552

RESUMEN

Oncogenic mutations of KRAS are found in the most aggressive human tumors, including colorectal cancer. It has been suggested that oncogenic KRAS phosphorylation at Ser181 modulates its activity and favors cell transformation. Using nonphosphorylatable (S181A), phosphomimetic (S181D), and phospho-/dephosphorylatable (S181) oncogenic KRAS mutants, we analyzed the role of this phosphorylation to the maintenance of tumorigenic properties of colorectal cancer cells. Our data show that the presence of phospho-/dephosphorylatable oncogenic KRAS is required for preserving the epithelial organization of colorectal cancer cells in 3D cultures, and for supporting subcutaneous tumor growth in mice. Interestingly, gene expression differed according to the phosphorylation status of KRAS. In DLD-1 cells, CTNNA1 was only expressed in phospho-/dephosphorylatable oncogenic KRAS-expressing cells, correlating with cell polarization. Moreover, lack of oncogenic KRAS phosphorylation leads to changes in expression of genes related to cell invasion, such as SERPINE1, PRSS1,2,3, and NEO1, and expression of phosphomimetic oncogenic KRAS resulted in diminished expression of genes involved in enterocyte differentiation, such as HNF4G. Finally, the analysis, in a public data set of human colorectal cancer, of the gene expression signatures associated with phosphomimetic and nonphosphorylatable oncogenic KRAS suggests that this post-translational modification regulates tumor progression in patients.


Asunto(s)
Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Línea Celular Tumoral , Polaridad Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/genética , Fosforilación , Inhibidor 1 de Activador Plasminogénico/genética , Receptores de Superficie Celular/genética , Tripsina/genética , Tripsinógeno/genética
6.
EMBO J ; 39(13): e103838, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484960

RESUMEN

Many oncogenes enhance nucleotide usage to increase ribosome content, DNA replication, and cell proliferation, but in parallel trigger p53 activation. Both the impaired ribosome biogenesis checkpoint (IRBC) and the DNA damage response (DDR) have been implicated in p53 activation following nucleotide depletion. However, it is difficult to reconcile the two checkpoints operating together, as the IRBC induces p21-mediated G1 arrest, whereas the DDR requires that cells enter S phase. Gradual inhibition of inosine monophosphate dehydrogenase (IMPDH), an enzyme required for de novo GMP synthesis, reveals a hierarchical organization of these two checkpoints. We find that the IRBC is the primary nucleotide sensor, but increased IMPDH inhibition leads to p21 degradation, compromising IRBC-mediated G1 arrest and allowing S phase entry and DDR activation. Disruption of the IRBC alone is sufficient to elicit the DDR, which is strongly enhanced by IMPDH inhibition, suggesting that the IRBC acts as a barrier against genomic instability.


Asunto(s)
Daño del ADN , Puntos de Control de la Fase G1 del Ciclo Celular , Nucleótidos/metabolismo , Ribosomas/metabolismo , Células HCT116 , Humanos , Nucleótidos/genética , Ribosomas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Int J Mol Sci ; 21(10)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456244

RESUMEN

Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.


Asunto(s)
Calmodulina/metabolismo , Carcinogénesis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Calmodulina/genética , Carcinogénesis/genética , Pleiotropía Genética , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Proteína de Unión al GTP rac1/genética
8.
FASEB J ; 34(5): 6907-6919, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267586

RESUMEN

DNA replication is essential for cell proliferation and is one of the cell cycle stages where DNA is more vulnerable. Replication stress is a prominent property of tumor cells and an emerging target for cancer therapy. Although it is not directly involved in nucleotide incorporation, Claspin is a protein with relevant functions in DNA replication. It harbors a DNA-binding domain that interacts preferentially with branched or forked DNA molecules. It also acts as a platform for the interaction of proteins related to DNA damage checkpoint activation, DNA repair, DNA replication origin firing, and fork progression. In order to find new proteins potentially involved in the regulation of DNA replication, we performed a two-hybrid screen to discover new Claspin-binding proteins. This system allowed us to identify the zinc-finger protein OZF (ZNF146) as a new Claspin-interacting protein. OZF is also present at replication forks and co-immunoprecipitates not only with Claspin but also with other replisome components. Interestingly, OZF depletion does not affect DNA replication in a normal cell cycle, but its depletion induces a reduction in the fork progression rate under replication stress conditions. Our results suggest that OZF is a Claspin-binding protein with a specific function in fork progression under replication stress.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Replicación del ADN/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclo Celular , Línea Celular , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico , Técnicas del Sistema de Dos Híbridos
9.
Cell Mol Life Sci ; 77(4): 735-749, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31297568

RESUMEN

During S phase, replication forks can encounter several obstacles that lead to fork stalling, which if persistent might result in fork collapse. To avoid this collapse and to preserve the competence to restart, cells have developed mechanisms that maintain fork stability upon replication stress. In this study, we aimed to understand the mechanisms involved in fork stability maintenance in non-transformed human cells by performing an isolation of proteins on nascent DNA-mass spectrometry analysis in hTERT-RPE cells under different replication stress conditions. Our results show that acute hydroxyurea-induced replication blockade causes the accumulation of large amounts of single-stranded DNA at the fork. Remarkably, this results in the disengagement of replisome components from nascent DNA without compromising fork restart. Notably, Cdc45-MCM-GINS helicase maintains its integrity and replisome components remain associated with chromatin upon acute hydroxyurea treatment, whereas replisome stability is lost upon a sustained replication stress that compromises the competence to restart.


Asunto(s)
Replicación del ADN/efectos de los fármacos , Hidroxiurea/farmacología , Línea Celular , ADN de Cadena Simple/genética , Humanos , Fase S/efectos de los fármacos
10.
Future Med Chem ; 11(9): 975-991, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31140879

RESUMEN

Aim: Calmodulin interacts in many different ways with its ligands. We aim to shed light on its plasticity analyzing the changes followed by the linker region and the relative position of the lobes using conventional molecular dynamics, accelerated MD and scaled MD (sMD). Materials & methods: Three different structures of calmodulin are compared, obtaining a total of 2.5 µs of molecular dynamics, which have been analyzed using the principal component analysis and clustering methodologies. Results: sMD simulations reach conformations that conventional molecular dynamics is not able to, without compromising the stability of the protein. On the other hand, accelerated MD requires optimization of the setup parameters to be useful. Conclusion: sMD is useful to study flexible proteins, highlighting those factors that justify its promiscuity.


Asunto(s)
Calmodulina/química , Simulación de Dinámica Molecular , Análisis por Conglomerados , Humanos , Análisis de Componente Principal , Conformación Proteica , Termodinámica
11.
PLoS Comput Biol ; 14(10): e1006552, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30376570

RESUMEN

K-Ras, one of the most common small GTPases of the cell, still presents many riddles, despite the intense efforts to unveil its mysteries. Such is the case of its interaction with Calmodulin, a small acidic protein known for its role as a calcium ion sensor. Although the interaction between these two proteins and its biological implications have been widely studied, a model of their interaction has not been performed. In the present work we analyse this intriguing interaction by computational means. To do so, both conventional molecular dynamics and scaled molecular dynamics have been used. Our simulations suggest a model in which Calmodulin would interact with both the hypervariable region and the globular domain of K-Ras, using a lobe to interact with each of them. According to the presented model, the interface of helixes α4 and α5 of the globular domain of K-Ras would be relevant for the interaction with a lobe of Calmodulin. These results were also obtained when bringing the proteins together in a step wise manner with the umbrella sampling methodology. The computational results have been validated using SPR to determine the relevance of certain residues. Our results demonstrate that, when mutating residues of the α4-α5 interface described to be relevant for the interaction with Calmodulin, the interaction of the globular domain of K-Ras with Calmodulin diminishes. However, it is to be considered that our simulations indicate that the bulk of the interaction would fall on the hypervariable region of K-Ras, as many more interactions are identified in said region. All in all our simulations present a suitable model in which K-Ras could interact with Calmodulin at membrane level using both its globular domain and its hypervariable region to stablish an interaction that leads to an altered signalling.


Asunto(s)
Calmodulina/química , Calmodulina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/fisiología , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
FASEB J ; 32(7): 3502-3517, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29452566

RESUMEN

A considerable proportion of tumors exhibit aneuploid karyotypes, likely resulting from the progressive loss of chromosomes after whole-genome duplication. Here, by using isogenic diploid and near-tetraploid (4N) single-cell-derived clones from the same parental cell lines, we aimed at exploring how polyploidization affects cellular functions and how tetraploidy generates chromosome instability. Gene expression profiling in 4N clones revealed a significant enrichment of transcripts involved in cell cycle and DNA replication. Increased levels of replication stress in 4N cells resulted in DNA damage, impaired proliferation caused by a cell cycle delay during S phase, and higher sensitivity to S phase checkpoint inhibitors. In fact, increased levels of replication stress were also observed in nontransformed, proliferative posttetraploid RPE1 cells. Additionally, replication stress promoted higher levels of intercellular genomic heterogeneity and ongoing genomic instability, which could be explained by high rates of mitotic defects, and was alleviated by the supplementation of exogenous nucleosides. Finally, our data found that 4N cancer cells displayed increased migratory and invasive capacity, both in vitro and in primary colorectal tumors, indicating that tetraploidy can promote aggressive cancer cell behavior.-Wangsa, D., Quintanilla, I., Torabi, K., Vila-Casadesús, M., Ercilla, A., Klus, G., Yuce, Z., Galofré, C., Cuatrecasas, M., Lozano, J. J., Agell, N., Cimini, D., Castells, A., Ried, T., Camps, J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness.


Asunto(s)
Movimiento Celular , Inestabilidad Cromosómica , Daño del ADN , Neoplasias/genética , Tetraploidía , Línea Celular Tumoral , Replicación del ADN , Humanos , Fase S
13.
PLoS One ; 12(6): e0178925, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28582471

RESUMEN

We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.


Asunto(s)
Nucléolo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación de la Expresión Génica , Orgánulos/metabolismo , Proteína SUMO-1/metabolismo , Nucléolo Celular/genética , Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Daño del ADN , Células HCT116 , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Biogénesis de Organelos , Orgánulos/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína SUMO-1/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/deficiencia , Enzimas Ubiquitina-Conjugadoras/genética , Proteína Exportina 1
14.
Nucleic Acids Res ; 44(10): 4745-62, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26939887

RESUMEN

Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity.


Asunto(s)
Proteínas Cdh1/metabolismo , Replicación del ADN , Origen de Réplica , Fase S/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Daño del ADN , Activación Enzimática , Inestabilidad Genómica , Humanos , Hidroxiurea/toxicidad , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/fisiología
15.
Oncotarget ; 6(29): 28238-56, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26318587

RESUMEN

Virtually all human cancers display chromosome instability (CIN), a condition in which chromosomes are gained or lost at a high rate. CIN occurs early in cancer development where it may undermine the advance of the neoplastic disease. With the aim of establishing the mechanisms underlying CIN in cancer, we investigated possible links between telomere-dysfunction and centrosome defects, which were seen to coincide in early in breast carcinogenesis using human mammary epithelial cells (HMECs). In this study, we show that TP53 proficient vHMECs cells develop centrosome aberrations when telomere-dysfunction genotoxic stress is produced in the presence of a defective p16INK4a setting and in parallel with an activation of the DNA damage checkpoint response. These aberrations consist of the accumulation of centrosomes in polyploid vHMECs, plus centriole overduplication in both diploid and polyploid cells, thus reflecting that distinct mechanisms underlie the generation of centrosome aberrations in vHMECs. Transduction of vHMEC with hTERT, which rescued the telomere dysfunction phenotype and consequently reduced DNA damage checkpoint activation, led to a progressive reduction of centrosome aberrations with cell culture, both in diploid and in polyploid vHMECs. Radiation-induced DNA damage also raised centrosome aberrations in vHMEC-hTERT. Collectively, our results, using vHMECs define a model where p16INK4a deficiency along with short dysfunctional telomeres cooperatively engenders centrosome abnormalities before p53 function is compromised.


Asunto(s)
Centrosoma/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Daño del ADN , Células Epiteliales/metabolismo , Telómero/genética , Western Blotting , Células Cultivadas , Centriolos/genética , Centriolos/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Hibridación Fluorescente in Situ , Glándulas Mamarias Humanas/citología , Microscopía Fluorescente , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Tetraploidía , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Gastroenterology ; 147(4): 882-892.e8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24998203

RESUMEN

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDAC) involves activation of c-Ki-ras2 Kirsten rat sarcoma oncogene homolog (KRAS) signaling, but little is known about the roles of proteins that regulate the activity of oncogenic KRAS. We investigated the activities of proteins that interact with KRAS in PDAC cells. METHODS: We used mass spectrometry to demonstrate that heterogeneous nuclear ribonucleoproteins (HNRNP) A2 and B1 (encoded by the gene HNRNPA2B1) interact with KRAS G12V. We used co-immunoprecipitation analyses to study interactions between HNRNPA2B1 and KRAS in KRAS-dependent and KRAS-independent PDAC cell lines. We knocked down HNRNPA2B1 using small hairpin RNAs and measured viability, anchorage-independent proliferation, and growth of xenograft tumors in mice. We studied KRAS phosphorylation using the Phos-tag system. RESULTS: We found that interactions between HRNPA2B1 and KRAS correlated with KRAS-dependency of some human PDAC cell lines. Knock down of HNRNPA2B1 significantly reduced viability, anchorage-independent proliferation, and formation of xenograft tumors by KRAS-dependent PDAC cells. HNRNPA2B1 knock down also increased apoptosis of KRAS-dependent PDAC cells, inactivated c-akt murine thymoma oncogene homolog 1 signaling via mammalian target of rapamycin, and reduced interaction between KRAS and phosphatidylinositide 3-kinase. Interaction between HNRNPA2B1 and KRAS required KRAS phosphorylation at serine 181. CONCLUSIONS: In KRAS-dependent PDAC cell lines, HNRNPA2B1 interacts with and regulates the activity of KRAS G12V and G12D. HNRNPA2B1 is required for KRAS activation of c-akt murine thymoma oncogene homolog 1-mammalian target of rapamycin signaling, interaction with phosphatidylinositide 3-kinase, and PDAC cell survival and tumor formation in mice. HNRNPA2B1 might be a target for treatment of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/genética
17.
Cancer Res ; 74(4): 1190-9, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24371225

RESUMEN

KRAS phosphorylation has been reported recently to modulate the activity of mutant KRAS protein in vitro. In this study, we defined S181 as a specific phosphorylation site required to license the oncogenic function of mutant KRAS in vivo. The phosphomutant S181A failed to induce tumors in mice, whereas the phosphomimetic mutant S181D exhibited an enhanced tumor formation capacity, compared with the wild-type KRAS protein. Reduced growth of tumors composed of cells expressing the nonphosphorylatable KRAS S181A mutant was correlated with increased apoptosis. Conversely, increased growth of tumors composed of cells expressing the phosphomimetic KRAS S181D mutant was correlated with increased activation of AKT and ERK, two major downstream effectors of KRAS. Pharmacologic treatment with PKC inhibitors impaired tumor growth associated with reduced levels of phosphorylated KRAS and reduced effector activation. In a panel of human tumor cell lines expressing various KRAS isoforms, we showed that KRAS phosphorylation was essential for survival and tumorigenic activity. Furthermore, we identified phosphorylated KRAS in a panel of primary human pancreatic tumors. Taken together, our findings establish that KRAS requires S181 phosphorylation to manifest its oncogenic properties, implying that its inhibition represents a relevant target to attack KRAS-driven tumors.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina/metabolismo , Proteínas ras/metabolismo , Animales , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos , Células 3T3 NIH , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras/genética
18.
J Cell Sci ; 126(Pt 20): 4553-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23943869

RESUMEN

Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.


Asunto(s)
Genes ras , Proteínas ras/genética , Proteínas ras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal
19.
Cell Cycle ; 11(19): 3627-37, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22935704

RESUMEN

Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38ß isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.


Asunto(s)
Replicación del ADN , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Animales , Afidicolina/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Ciclina B1/antagonistas & inhibidores , Ciclina B1/metabolismo , ADN/biosíntesis , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Hidroxiurea/farmacología , Cinética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 6/metabolismo , Ratones , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo
20.
J Pharmacol Exp Ther ; 343(1): 184-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22787116

RESUMEN

Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)(2) (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-ß-induced collagen mRNA expression and interleukin (IL)-1ß-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1ß/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.


Asunto(s)
Proliferación Celular , Colágeno/biosíntesis , Citocinas/biosíntesis , Mucosa Nasal/metabolismo , Pólipos Nasales/metabolismo , Inhibidores de Proteasoma/farmacología , Adulto , Ácidos Borónicos/farmacología , Ácidos Borónicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/antagonistas & inhibidores , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Persona de Mediana Edad , Mucosa Nasal/efectos de los fármacos , Pólipos Nasales/tratamiento farmacológico , Inhibidores de Proteasoma/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA