Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Curr Biol ; 34(1): R30-R33, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194927

RESUMEN

Broad ecological sampling of spider silks from multiple species shows that the biomechanical properties of spider silk reflect the habitat in which their orb webs are built. Silk toughness is highest in habitats with dense rain.


Asunto(s)
Internet , Lluvia , Fenómenos Biomecánicos , Seda
2.
Sci Adv ; 9(51): eadj0348, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117895

RESUMEN

Subterranean animals living in perpetual darkness may maintain photoresponse. However, the evolutionary processes behind the conflict between eye loss and maintenance of the photoresponse remain largely unknown. We used Leptonetela spiders to investigate the driving forces behind the maintenance of the photoresponse in cave-dwelling spiders. Our behavioral experiments showed that all eyeless/reduced-eyed cave-dwelling species retained photophobic response and that they had substantially decreased survival at cave entrances due to weak drought resistance. The transcriptomic analysis demonstrated that nearly all phototransduction pathway genes were present and that all tested phototransduction pathway genes were subjected to strong functional constraints in cave-dwelling species. Our results suggest that cave-dwelling eyeless spiders still use light and that light detection likely plays a role in avoiding the cave entrance habitat. This study confirms that some eyeless subterranean animals have retained their photosensitivity due to natural selection and provides a case of mismatch between phenotype and genotype or physiological function in a long-term evolutionary process.


Asunto(s)
Arañas , Animales , Evolución Biológica , Cuevas , Arañas/genética
3.
Syst Biol ; 72(4): 964-971, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161751

RESUMEN

Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this "splitting" scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.].


Asunto(s)
Evolución Biológica , Arañas , Animales , Filogenia , Arañas/genética
4.
Integr Zool ; 18(4): 736-745, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36054470

RESUMEN

Detritus-based, bell-shaped cobwebs are an ideal model to research the plasticity of web architecture due to clearly separate defense and foraging components. We performed a thorough field investigation on the web architectures of Campanicola campanulata to research its cobweb architecture variation during the growth process and analyzed the energy trade-offs between foraging and defense at different developmental stages. The results indicated that as female C. campanulata grew, they dedicated more energy to defense and less energy to foraging, while males dedicated less energy to both defense and foraging through the growth period. We hypothesize that cobweb spiders dedicate an increasing amount of energy to safety based on evidence obtained from their life-history. Meanwhile, we present a new model to investigate web architecture variation and provide a new framework to quantify the energy allocation between foraging and predator defense for web-building spiders.


Asunto(s)
Arañas , Femenino , Animales , Conducta Predatoria
5.
Sci Rep ; 12(1): 17769, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273015

RESUMEN

Net-casting spiders (Deinopidae) comprise a charismatic family with an enigmatic evolutionary history. There are 67 described species of deinopids, placed among three genera, Deinopis, Menneus, and Asianopis, that are distributed globally throughout the tropics and subtropics. Deinopis and Asianopis, the ogre-faced spiders, are best known for their giant light-capturing posterior median eyes (PME), whereas Menneus does not have enlarged PMEs. Molecular phylogenetic studies have revealed discordance between morphology and molecular data. We employed a character-rich ultra-conserved element (UCE) dataset and a taxon-rich cytochrome-oxidase I (COI) dataset to reconstruct a genus-level phylogeny of Deinopidae, aiming to investigate the group's historical biogeography, and examine PME size evolution. Although the phylogenetic results support the monophyly of Menneus and the single reduction of PME size in deinopids, these data also show that Deinopis is not monophyletic. Consequently, we formally transfer 24 Deinopis species to Asianopis; the transfers comprise all of the African, Australian, South Pacific, and a subset of Central American and Mexican species. Following the divergence of Eastern and Western deinopids in the Cretaceous, Deinopis/Asianopis dispersed from Africa, through Asia and into Australia with its biogeographic history reflecting separation of Western Gondwana as well as long-distance dispersal events.


Asunto(s)
Arañas , Animales , Filogenia , Australia , Citocromos , Oxidorreductasas , Evolución Molecular , Teorema de Bayes
6.
PLoS One ; 17(6): e0268660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35666730

RESUMEN

Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks.


Asunto(s)
Fibroínas , Arañas , Animales , Femenino , Fibroínas/genética , Fibroínas/metabolismo , Masculino , Corteza de la Planta/metabolismo , Seda/química , Transcriptoma
7.
Zookeys ; 1082: 153-178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35115870

RESUMEN

In an ongoing effort to expand knowledge of the Chinese cobweb spider fauna (Theridiidae), the genus Meotipa Simon, 1894 is reviewed. Two new species are described, Meotipapseudopicturata sp. nov., Meotipastriata sp. nov., and five known species are redescribed: Meotipaargyrodiformis (Yaginuma, 1952), Meotipapulcherrima (Mello-Leitão, 1917), Meotipapicturata Simon, 1895, Meotipaspiniventris (O. Pickard-Cambridge, 1869), and Meotipavesiculosa Simon, 1895.

8.
Zookeys ; 1125: 33-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761284

RESUMEN

The spider genus Episinus Walckenaer, 1809 currently contains 66 species worldwide, mostly in warm temperate to tropical areas. This paper describes two new Chinese Episinus species: E.ornithorrhynchus sp. nov. (♂♀) and E.papilionaceous sp. nov. (♀). We add these two new and one known Episinus species to the phylogenetic data matrix of Liu et al. 2016 and reanalyze the data. The new phylogeny recovers the monophyly of Episinus and supports its division into two groups, a finding also supported by morphology.

9.
PeerJ ; 9: e11775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484980

RESUMEN

Sinopoda spiders are a diverse group with limited dispersal ability. They are remarkably sympatric among related species, which often results in misidentification and incorrect matching of sexes. In order to understand the evolutionary relationships and revise the taxonomy problems in this genus, we offer the first molecular phylogeny of Sinopoda. Our results strongly support the monophyly of Sinopoda and its sister relationship with Spariolenus and reject the monophyly of the S. okinawana species group. We establish three new species groups based on both molecular and morphological data. Our phylogeny also illuminates some taxonomic issues and clarifies some species limits: (1) Supporting the newly revised matching of sexes in S. longiducta and S. yaanensis by Zhong et al. (2019). (2) The original description of S. campanacea was based on mismatched sexes. S. changde is proposed as a junior synonymy of S. campanacea, while the original female 'S. campanacea' is here described as a new species: S. papilionaceous Liu sp. nov. (3) The type series of S. serpentembolus contains mismatched sexes. The female is considered as S. campanacea, while we here report the correctly matched females of S. serpentembolus. (4) We describe one additional new species: S. wuyiensis Liu sp. nov. Our first molecular phylogeny of Sinopoda provides a tool for comparative analyses and a solid base for the future biodiversity and taxonomic work on the genus.

10.
J R Soc Interface ; 18(179): 20210320, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34129788

RESUMEN

The spider major ampullate (MA) silk exhibits high tensile strength and extensibility and is typically a blend of MaSp1 and MaSp2 proteins with the latter comprising glycine-proline-glycine-glycine-X repeating motifs that promote extensibility and supercontraction. The MA silk from Darwin's bark spider (Caerostris darwini) is estimated to be two to three times tougher than the MA silk from other spider species. Previous research suggests that a unique MaSp4 protein incorporates proline into a novel glycine-proline-glycine-proline motif and may explain C. darwini MA silk's extraordinary toughness. However, no direct correlation has been made between the silk's molecular structure and its mechanical properties for C. darwini. Here, we correlate the relative protein secondary structure composition of MA silk from C. darwini and four other spider species with mechanical properties before and after supercontraction to understand the effect of the additional MaSp4 protein. Our results demonstrate that C. darwini MA silk possesses a unique protein composition with a lower ratio of helices (31%) and ß-sheets (20%) than other species. Before supercontraction, toughness, modulus and tensile strength correlate with percentages of ß-sheets, unordered or random coiled regions and ß-turns. However, after supercontraction, only modulus and strain at break correlate with percentages of ß-sheets and ß-turns. Our study highlights that additional information including crystal size and crystal and chain orientation is necessary to build a complete structure-property correlation model.


Asunto(s)
Seda , Arañas , Animales , Corteza de la Planta , Estructura Secundaria de Proteína , Resistencia a la Tracción
11.
Zookeys ; 1055: 95-121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36762170

RESUMEN

Eight cobweb spider species building a detritus-based, bell-shaped retreat from China are reported in the current paper, including five new Campanicola species and three known species: Campanicolaanguilliformis Li & Liu, sp. nov., Campanicolafalciformis Li & Liu, sp. nov., Campanicolaheteroidea Li & Liu, sp. nov., Campanicolatauricornis Li & Liu, sp. nov., Campanicolavolubilis Li & Liu, sp. nov., Campanicolacampanulata (Chen, 1993), Campanicolaferrumequina (Bösenberg & Strand, 1906), and Parasteatodaducta (Zhu, 1998). Among them, the male of Parasteatodaducta (Zhu, 1998) is described for the first time. We provide photographs of all species and descriptions for new species in the current paper. The type of bell-shaped retreat is rare in theridiid, and found only in four related genera. A natural next step upon completing this taxonomic study would be to analyse and understand the evolution of the retreat and related traits.

12.
Zookeys ; 964: 1-30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32939145

RESUMEN

The Caribbean biodiversity hotspot harbors vast reserves of undiscovered species. A large-scale inventory of Caribbean arachnids (CarBio) is uncovering new species across the arachnid tree of life, and allowing inference of the evolutionary history that has generated this diversity. Herein we describe ten new species of Heteroonops (Oonopidae, or goblin spiders), from Hispaniola: H. scapula sp. nov., H. jurassicus sp. nov., H. aylinalegreae sp. nov., H. verruca sp. nov., H. renebarbai sp. nov., H. yuma sp. nov., H. carlosviquezi sp. nov., H. gabrielsantosi sp. nov., H. solanllycarreroae sp. nov. and H. constanza sp. nov. The occurrence of the pantropical type species Heteroonops spinimanus (Simon, 1891) is reported and new localities are given for: H. validus (Bryant, 1948), H. vega (Platnick & Dupérré, 2009) and H. castelloides (Platnick & Dupérré, 2009). Molecular phylogenies indicate substantial genetic divergence separating these taxa. This work adds to evidence that the depth of diversity in the Caribbean biodiversity hotspot is particularly striking for tiny taxa living in leaf litter.

13.
PeerJ ; 8: e8976, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391201

RESUMEN

BACKGROUND: Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. METHODS: We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. RESULTS: Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.

14.
Syst Biol ; 69(6): 1122-1136, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170955

RESUMEN

Vicariance and dispersal events, combined with intricate global climatic history, have left an imprint on the spatiotemporal distribution and diversity of many organisms. Anelosimus cobweb spiders (Theridiidae), are organisms ranging in behavior from solitary to highly social, with a cosmopolitan distribution in temperate to tropical areas. Their evolutionary history and the discontinuous distribution of species richness suggest that 1) long-distance overwater dispersal and 2) climate change during the Neogene (23-2.6 Ma), may be major factors in explaining their distribution and diversification. Here, we test these hypotheses, and explicitly test if global Miocene/Pliocene climatic cooling in the last 8 Ma affected Anelosimus radiation in parallel in South America and Madagascar. To do so, we investigate the phylogeny and spatiotemporal biogeography of Anelosimus through a culmination of a 20-year comprehensive global sampling at the species level (69 species, including 84% of the known 75 species worldwide, represented by 268 individuals) using nucleotide data from seven loci (5.5 kb). Our results strongly support the monophyly of Anelosimus with an Oligocene ($\sim $30 Ma) South American origin. Major clades on other continents originate via multiple, long-distance dispersal events, of solitary or subsocial-but not social-lineages, from the Americas. These intercontinental dispersals were to Africa, Madagascar (twice), and SE Asia/Australasia. The early diversification of Anelosimus spiders coincides with a sudden thermal increase in the late Oligocene ($\sim $27-25 Ma), though no causal connection can be made. Our results, however, strongly support the hypothesis that global Neogene climatic cooling in the last 8 Ma drove Anelosimus radiation in parallel in South America and Madagascar, offering a rare empirical evidence for diversification of a socially diverse group driven by an interplay between long-distance dispersal and global Neogene climatic changes. [Cobweb spiders; diversification; global biogeography; long-distance dispersal; molecular phylogenetics; neogene climate changes; sociality; vicariance.].


Asunto(s)
Distribución Animal/fisiología , Biodiversidad , Filogenia , Arañas/clasificación , Arañas/fisiología , Animales , Cambio Climático
15.
Zookeys ; 915: 17-24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32148421

RESUMEN

Spintharus is a genus of spiders that contained only two species until 2018 when it was demonstrated that a 'widespread' species was instead composed of multiple short-range endemics. This note redescribes Spintharus gracilis Keyserling and describes a new species of Spintharus (Araneae, Theridiidae), S. leverger sp. nov., both based on specimens from Brazil. We also examine specimens from several additional localities in Brazil displaying variation consistent with patterns previously found within the Caribbean: geographically isolated and unique localities may contain independent species lineages. Given the limited number of specimens, profuse variation, and lack of DNA data from museum specimens, it is challenging to gauge the number of species in the observed material. Instead of describing these as new species here, we highlight this variation and hypothesize that in South America, a greater diversity of the genus across the geographical landscape will be found than predicted based on Levi's "widespread Spintharus flavidus" hypothesis. Our results suggest that continental efforts to sample the genus would be profitable, as this charismatic group likely harbors unappreciated diversity throughout the continent.

16.
Cladistics ; 36(1): 1-21, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34618955

RESUMEN

We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identified and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typical araneids, here informally named the "ARA Clade". The araneid genera analysed here include roughly 90% of all currently named araneid species. The ARA Clade is the primary focus of this analysis. In taxonomic terms, outgroups comprise 22 genera and 11 families, and the ingroup comprises three Zygiellinae and four Nephilinae genera, and 85 ARA Clade genera (ten new). Within the ARA Clade, we recognize ten informal groups that contain at least three genera each and are supported under Bayesian posterior probabilities (≥ 0.95): "Caerostrines" (Caerostris, Gnolus and Testudinaria), "Micrathenines" (Acacesia, Micrathena, Ocrepeira, Scoloderus and Verrucosa), "Eriophorines" (Acanthepeira, Alpaida, Eriophora, Parawixia and Wagneriana), "Backobourkiines" (Acroaspis, Backobourkia, Carepalxis, Novakiella, Parawixia, Plebs, Singa and three new genera), "Argiopines" (Arachnura, Acusilas, Argiope, Cyrtophora, Gea, Lariniaria and Mecynogea), "Cyrtarachnines" (Aranoethra, Cyrtarachne, Paraplectana, Pasilobus and Poecilopachys), "Mastophorines" (Celaenia, Exechocentrus and Mastophora,), "Nuctenines" (Larinia, Larinioides and Nuctenea), "Zealaraneines" (Colaranea, Cryptaranea, Paralarinia, Zealaranea and two new genera) and "Gasteracanthines" (Augusta, Acrosomoides, Austracantha, Gasteracantha, Isoxya, Macracantha, Madacantha, Parmatergus and Thelacantha). Few of these groups are currently corroborated by morphology, behaviour, natural history or biogeography. We also include the large genus Araneus, along with Aculepeira, Agalenatea, Anepsion, Araniella, Cercidia, Chorizopes, Cyclosa, Dolophones, Eriovixia, Eustala, Gibbaranea, Hingstepeira, Hypognatha, Kaira, Larinia, Mangora, Metazygia, Metepeira, Neoscona, Paraplectanoides, Perilla, Poltys, Pycnacantha, Spilasma and Telaprocera, but the placement of these genera was generally ambiguous, except for Paraplectanoides, which is strongly supported as sister to traditional Nephilinae. Araneus, Argiope, Eriophora and Larinia are polyphyletic, Araneus implying nine new taxa of genus rank, and Eriophora and Larinia two each. In Araneus and Eriophora, polyphyly was usually due to north temperate generic concepts being used as dumping grounds for species from southern hemisphere regions, e.g. South-East Asia, Australia or New Zealand. Although Araneidae is one of the better studied spider families, too little natural history and/or morphological data are available across these terminals to draw any strong evolutionary conclusions. However, the classical orb web is reconstructed as plesiomorphic for Araneidae, with a single loss in "cyrtarachnines"-"mastophorines". Web decorations (collectively known as stabilimenta) evolved perhaps five times. Sexual dimorphism generally results from female body size increase with few exceptions; dimorphic taxa are not monophyletic and revert to monomorphism in a few cases.

17.
Commun Biol ; 2: 275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31372514

RESUMEN

Darwin's bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We show C. darwini dragline-producing major ampullate (MA) glands highly express a novel silk gene transcript (MaSp4) encoding a protein that diverges markedly from closely related proteins and contains abundant proline, known to confer silk extensibility, in a unique GPGPQ amino acid motif. This suggests C. darwini evolved distinct proteins that may have increased its dragline's toughness, enabling giant webs. Caerostris darwini's MA spinning ducts also appear unusually long, potentially facilitating alignment of silk proteins into extremely tough fibers. Thus, a suite of novel traits from the level of genes to spinning physiology to silk biomechanics are associated with the unique ecology of Darwin's bark spider, presenting innovative designs for engineering biomaterials.


Asunto(s)
Fibroínas/química , Proteínas de Insectos/fisiología , Arañas/genética , Transcriptoma , Animales , Proteínas de Insectos/genética , Arañas/anatomía & histología
18.
PeerJ ; 7: e6703, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30976470

RESUMEN

Much genomic-scale, especially transcriptomic, data on spider phylogeny has accumulated in the last few years. These data have recently been used to investigate the diverse architectures and the origin of spider webs, concluding that the ancestral spider spun no foraging web, that spider webs evolved de novo 10-14 times, and that the orb web evolved at least three times. These findings in fact result from a particular phylogenetic character coding strategy, specifically coding the absence of webs as logically equivalent, and homologous to, 10 other observable (i.e., not absent) web architectures. "Absence" of webs should be regarded as inapplicable data. To be analyzed properly by character optimization algorithms, it should be coded as "?" because these codes-or their equivalent-are handled differently by such algorithms. Additional problems include critical misspellings of taxon names from one analysis to the next (misspellings cause some optimization algorithms to drop terminals, which affects taxon sampling and results), and mistakes in spider natural history. In sum, the method causes character optimization algorithms to produce counter-intuitive results, and does not distinguish absence from secondary loss. Proper treatment of missing entries and corrected data instead imply that foraging webs are primitive for spiders and that webs have been lost ∼5-7 times, not gained 10-14 times. The orb web, specifically, may be homologous (originated only once) although lost 2-6 times.

19.
Sci Rep ; 9(1): 397, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674906

RESUMEN

Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene flow and diversification of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifically, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversified on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.


Asunto(s)
ADN Mitocondrial/genética , Efecto Fundador , Modelos Genéticos , Filogenia , Arañas/clasificación , Arañas/genética , Animales , Región del Caribe , Filogeografía
20.
Syst Biol ; 68(4): 555-572, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30517732

RESUMEN

Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.


Asunto(s)
Tamaño Corporal/genética , Filogenia , Caracteres Sexuales , Arañas/clasificación , Animales , Femenino , Masculino , Arañas/anatomía & histología , Arañas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA