Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958926

RESUMEN

Wild species field cress (Lepidium campestre) has favorable agronomic traits, making it a good candidate for future development as an oil and catch crop. However, the species is very prone to pod shatter, resulting in severe yield losses. This is one of the important agronomic traits that needs to be improved in order to make this species economically viable. In this study, we cloned the L. campestre INDEHISCENT (LcIND) gene and prepared two LcIND-RNAi constructs with the IND promoter (long 400 bp and short 200 bp) from Arabidopsis. A number of stable transgenic lines were developed and evaluated in terms of pod shatter resistance. The majority of the transgenic lines showed increased resistance to pod shatter compared to the wild type, and this resistance was maintained in four subsequent generations. The downregulation of the LcIND gene by RNAi in the transgenic lines was confirmed by qRT-PCR analysis on T3 lines. Southern blot analysis showed that most of the analyzed lines had a single-copy integration of the transgene, which is desirable for further use. Our results show that it is possible to generate stable transgenic lines with desirable pod shatter resistance by downregulating the LcIND gene using RNAi in field cress, and thus speeding up the domestication process of this wild species.


Asunto(s)
Arabidopsis , Brassicaceae , Lepidium , Lepidium/genética , Interferencia de ARN , Regulación hacia Abajo , Brassicaceae/genética , Arabidopsis/genética , Plantas Modificadas Genéticamente/genética
2.
Front Genome Ed ; 5: 1183791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051558

RESUMEN

[This corrects the article DOI: 10.3389/fgeed.2021.757540.].

3.
Front Genome Ed ; 3: 757540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34870274

RESUMEN

Field cress (Lepidium campestre) is a potential oilseed crop that has been under domestication in recent decades. CRISPR/Cas9 is a powerful tool for rapid trait improvement and gene characterization and for generating transgene-free mutants using protoplast transfection system. However, protoplast regeneration remains challenging for many plant species. Here we report an efficient protoplast regeneration and transfection protocol for field cress. Important factors such as type of basal media, type/combination of plant growth regulators, and culture duration on different media were optimized. Among the basal media tested, Nitsch was the best for protoplast growth in MI and MII media. For cell wall formation during the early stage of protoplast growth, relatively high auxin concentrations (0.5 mg L-1 NAA and 2,4-D), without addition of cytokinin was preferred for maintaining protoplast viability. After cell wall formation, 1.1 mg L-1 TDZ combined with either 0.05 mg L-1 NAA or 2,4-D was found to efficiently promote protoplast growth. On solid shoot induction medium, 1.1 mg L-1 TDZ without any auxin resulted in over 80% shoot generation frequency. A longer culture duration in MI medium would inhibit protoplast growth, while a longer culture duration in MII medium significantly delayed shoot formation. Using this optimized protoplast regeneration protocol, we have established an efficient PEG-mediated transfection protocol using a vector harboring the GFP gene, with transfection efficiencies of 50-80%. This efficient protoplast protocol would facilitate further genetic improvement of field cress via genome editing, and be beneficial to development of protoplast regeneration protocols for related plant species.

4.
Plant Cell Rep ; 35(10): 2055-63, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27313135

RESUMEN

KEY MESSAGE: Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype. Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.


Asunto(s)
Silenciador del Gen , Lepidium/metabolismo , Ácido Oléico/metabolismo , Southern Blotting , Segregación Cromosómica/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Conformación Molecular , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie , Transformación Genética
5.
Front Plant Sci ; 7: 2032, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119714

RESUMEN

The wild species field cress (Lepidium campestre), belonging to the Brassicaceae family, has potential to be developed into a novel oilseed- and catch crop, however, the species needs to be further improved regarding some important agronomic traits. One of them is its low oil content which needs to be increased. As far as we know there is no study aiming at increasing the oil content that has been reported in this species. In order to investigate the possibility to increase the seed oil content in field cress, we have tried to introduce the Arabidopsis WRINKLED1 (AtWRI1) or hemoglobin (Hb) genes from either Arabidopsis thaliana (AtHb2) or Beta vulgaris (BvHb2) into field cress with the seed specific expression. The hypothesis was that the oil content would be increased by overexpressing these target genes. The results showed that the oil content was indeed increased by up to 29.9, 20.2, and 25.9% in the transgenic lines expressing AtWRI1, AtHb2, and BvHb2, respectively. The seed oil composition of the transgenic lines did not significantly deviate from the seed oil composition of the wild type plants. Our results indicate that genetic modification can be used in this wild species for its fast domestication into a future economically viable oilseed and catch crop.

6.
Am J Bot ; 101(2): 255-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24500805

RESUMEN

PREMISE OF THE STUDY: Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. METHODS: In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. KEY RESULTS: We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. CONCLUSIONS: We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Genes de Plantas , Hipocótilo/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ecotipo , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Células Vegetales , Haz Vascular de Plantas , Plantas Modificadas Genéticamente
7.
BMC Plant Biol ; 13: 115, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23937221

RESUMEN

BACKGROUND: Lepidium campestre is an undomesticated oilseed species with a great potential to become a new crop for both food and industrial feedstocks production. Genetic modification is needed for further improving the oil quantity and quality of Lepidium. Studies on in vitro shoot regeneration of Lepidium are very limited and there is no transformation protocol available. RESULTS: We have investigated the effects of different factors, especially the type, concentration and combination of plant growth regulators (PGRs) on in vitro shoot regeneration of Lepidium. The results showed that the 2,4-D treatment was crucial to shoot regeneration from different explants. The duration of 2,4-D exposure between 2-4 days did not show significant difference in shoot regeneration, while the effect of 2,4-D concentration varied greatly depending on the type of explants and cytokinins used, for example, the low concentration of 2,4-D combined with TDZ significantly increased the regeneration frequency of hypocotyls. Cotyledon and hypocotyl explants responded differently to cytokinin, for example, TDZ was more effective than zeatin in promoting shoot regeneration from hypocotyls, but did not affect the regeneration of cotyledons which was more affected by high concentration of zeatin. The results also showed that NAA was not effective for shoot regeneration. Germination in light increased the regeneration frequency compared to that in dark. After optimization of the different conditions, an efficient regeneration protocol was developed with the regeneration efficiency of 92.7%. Using this protocol, the transformation frequency of 6% in average was achieved. The presence of transgenes in the transgenic lines was confirmed by GUS staining, PCR and Southern blot analyses. CONCLUSION: Through systematic investigation of important factors affecting in vitro shoot regeneration, we have developed an efficient regeneration and transformation protocol for the genetic modification of Lepidium campestre. The method may also be applied to the related species.


Asunto(s)
Lepidium/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Regeneración , Transformación Genética , Ácido 2,4-Diclorofenoxiacético , Citocininas/farmacología , Ingeniería Genética/métodos , Lepidium/genética , Compuestos de Fenilurea/farmacología , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Tiadiazoles/farmacología , Zeatina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA