RESUMEN
Interleukin 31 (IL-31) is a proinflammatory cytokine, mainly secreted by Type II helper T cells. It signals through a heterodimeric receptor complex composed of IL-31 receptor α and oncostatin-M receptor ß chain. The hallmark feature of IL-31, in its pathological role, is its ability to induce pruritus in mammals. Pruritus is a common symptom and major reason of morbidity in cancer patients, compromising their quality of life. Although, IL-31 is differentially expressed in different tumor types and could promote or inhibit cancer progression, high expression of IL-31 is a contributing factor to advanced stage tumor and severity of pruritus. The simultaneous existence of pruritus and cancer could either result from the aberrations in common proteins that co-exist in both cancer and pruritus or the therapeutic treatment of cancer could indirectly induce pruritus. Although the biology of IL-31 has predominantly been described in skin diseases such as atopic dermatitis and other inflammatory diseases, the precise role of IL-31 in the tumor biology of different cancer types remains elusive. Herein, we summarize the current understanding on the role of this cytokine in the pathogenesis of different cancers.
Asunto(s)
Interleucinas , Neoplasias , Prurito , Humanos , Prurito/metabolismo , Prurito/inmunología , Prurito/etiología , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/inmunología , Interleucinas/metabolismo , Animales , Transducción de Señal , Inflamación/metabolismoRESUMEN
Tyrosine kinase inhibitors (TKIs) offer targeted therapy for cancers but can cause severe cardiotoxicities. Determining their dosedependent impact on cardiac function is required to optimize therapy and minimize adverse effects. The dosedependent cardiotoxic effects of two TKIs, imatinib and ponatinib, were assessed in vitro using H9c2 cardiomyoblasts and in vivo using zebrafish embryos. In vitro, H9c2 cardiomyocyte viability, apoptosis, size, and surface area were evaluated to assess the impact on cellular health. In vivo, zebrafish embryos were analyzed for heart rate, blood flow velocity, and morphological malformations to determine functional and structural changes. Additionally, reverse transcriptionquantitative PCR (RTqPCR) was employed to measure the gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), established markers of cardiac injury. This comprehensive approach, utilizing both in vitro and in vivo models alongside functional and molecular analyses, provides a robust assessment of the potential cardiotoxic effects. TKI exposure decreased viability and surface area in H9c2 cells in a dosedependent manner. Similarly, zebrafish embryos exposed to TKIs exhibited dosedependent heart malformation. Both TKIs upregulated ANP and BNP expression, indicating heart injury. The present study demonstrated dosedependent cardiotoxic effects of imatinib and ponatinib in H9c2 cells and zebrafish models. These findings emphasize the importance of tailoring TKI dosage to minimize cardiac risks while maintaining therapeutic efficacy. Future research should explore the underlying mechanisms and potential mitigation strategies of TKIinduced cardiotoxicities.
Asunto(s)
Cardiotoxicidad , Mesilato de Imatinib , Imidazoles , Miocitos Cardíacos , Piridazinas , Pez Cebra , Animales , Pez Cebra/embriología , Imidazoles/toxicidad , Piridazinas/efectos adversos , Piridazinas/farmacología , Piridazinas/toxicidad , Mesilato de Imatinib/toxicidad , Mesilato de Imatinib/efectos adversos , Mesilato de Imatinib/farmacología , Cardiotoxicidad/etiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/toxicidad , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , RatasRESUMEN
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Asunto(s)
COVID-19 , Quimiocina CCL2 , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/virología , COVID-19/patología , Quimiocina CCL2/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Pronóstico , Receptores CCR2/metabolismo , Biomarcadores , Antiinflamatorios/uso terapéutico , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virologíaRESUMEN
Macrolide antibiotic azithromycin is widely used in clinical practice to treat respiratory tract infections and inflammatory diseases. However, its mechanism of action is not fully understood. Given the involvement of the CD27 pathway in the pathophysiology of various T-lymphocyte-mediated inflammatory, autoimmune, and lymphoproliferative diseases, we examined the impact of AZM on CD27 regulation and potential consequences on CD4+ and CD8+ T-cell phenotypes. Using cellular immunology approaches on healthy donors' peripheral blood mononuclear cells, we demonstrate AZM-mediated downregulation of surface CD27 expression as well as its extracellular release as soluble CD27. Notably, AZM-exposed CD27high (hi) cells were defective in their ability to expand compared to CD27intermediate (Int) and CD27low (lo) subsets. The defective CD27hi subset expansion was found to be associated with impaired cell proliferation and cell division. At the molecular level, the CD27hi subset exhibited lower mTOR activity than other subsets. Functionally, AZM treatment resulted in marked depletion of helper CD4+ (Th1) and cytotoxic CD8+ T-lymphocyte (Tc1)-associated CXCR3+CD27hi effector cells and inhibition of inflammatory cytokine IFN-γ production. These findings provide mechanistic insights on immunomodulatory features of AZM on T-lymphocyte by altering the CD27 pathway. From a clinical perspective, this study also sheds light on potential clinical benefits observed in patients on prophylactic AZM regimens against various respiratory diseases and opens avenues for future adjunct therapy against Th1- and Tc1-dominated inflammatory and autoimmune diseases.
Asunto(s)
Azitromicina , Transducción de Señal , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Humanos , Azitromicina/farmacología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fenotipo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Células TH1/inmunología , Células TH1/efectos de los fármacos , Antibacterianos/farmacología , Activación de Linfocitos/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacosRESUMEN
Cutaneous T-cell lymphomas (CTC) are a heterogeneous group of T-cell lymphoproliferative malignancies of the skin with limited treatment options, increased resistance and remission. Metabolic reprogramming is vital in orchestrating the uncontrolled growth and proliferation of cancer cells. Importantly, deregulated signalling plays a significant role in metabolic reprogramming. Considering the crucial role of metabolic reprogramming in cancer-cell growth and proliferation, target identification and the development of novel and multi-targeting agents are imperative. The present study explores the underlying mechanisms and metabolic signalling pathways associated with Glabridin mediated anti-cancer actions in CTCL. Our results show that Glabridin significantly inhibits the growth of CTCL cells through induction of programmed cell death (PCD) such as apoptosis, autophagy and necrosis. Interestingly, results further show that Glabridin induces PCD in CTCL cells by targeting MAPK signalling pathways, particularly the activation of ERK. Further, Glabridin also sensitized CTCL cells to the anti-cancer drug, bortezomib. Importantly, LC-MS-based metabolomics analyses further showed that Glabridin targeted multiple metabolites and metabolic pathways intricately involved in cancer cell growth and proliferation in an ERK-dependent fashion. Overall, our findings revealed that Glabridin induces PCD and attenuates the expression of regulatory proteins and metabolites involved in orchestrating the uncontrolled proliferation of CTCL cells through ERK activation. Therefore, Glabridin possesses important features of an ideal anti-cancer agent.
Asunto(s)
Apoptosis , Proliferación Celular , Isoflavonas , Linfoma Cutáneo de Células T , Metabolómica , Fenoles , Humanos , Isoflavonas/farmacología , Proliferación Celular/efectos de los fármacos , Fenoles/farmacología , Línea Celular Tumoral , Linfoma Cutáneo de Células T/metabolismo , Linfoma Cutáneo de Células T/patología , Linfoma Cutáneo de Células T/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antineoplásicos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/tratamiento farmacológicoRESUMEN
S-phase kinase-associated protein 2 (Skp2) is an F-box protein overexpressed in human cancers and linked with poor prognosis. It triggers cancer pathogenesis, including stemness and drug resistance. In this study, we have explored the potential role of Skp2 targeting in restoring the expression of tumor suppressors in human cutaneous squamous cell carcinoma (cSCC) cells. Our results showed that genetic and pharmacological Skp2 targeting markedly suppressed cSCC cell proliferation, colony growth, spheroid formation, and enhanced sensitization to chemotherapeutic drugs. Further, western blot results demonstrated restoration of tumor suppressor (KLF4) and CDKI (p21) and suppression of vimentin and survivin in Skp2-knocked-down cSCC cells. Importantly, we also explored that Skp2 targeting potentiates apoptosis of cSCC cells through MAPK signaling. Moreover, co-targeting of Skp2 and PI3K/AKT resulted in increased cancer cell death. Interestingly, curcumin, a well-known naturally derived anticancer agent, also inhibits Skp2 expression with concomitant CDKI upregulation. In line, curcumin suppressed cSCC cell growth through ROS-mediated apoptosis, while the use of N-acetyl cysteine (NAC) reversed curcumin-induced cell death. Curcumin treatment also sensitized cSCC cells to conventional anticancer drugs, such as cisplatin and doxorubicin. Altogether, these data suggest that Skp2 targeting restores the functioning of tumor suppressors, inhibits the expression of genes associated with cell proliferation and stemness, and sensitizes cancer cells to anticancer drugs. Thus, genetic, and pharmacological ablation of Skp2 can be an important strategy for attenuating cancer pathogenesis and associated complications in skin squamous cell carcinoma.
Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Factor 4 Similar a Kruppel , Proteínas Quinasas Asociadas a Fase-S , Neoplasias Cutáneas , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Apoptosis/efectos de los fármacos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Factor 4 Similar a Kruppel/metabolismo , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacosRESUMEN
Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.
RESUMEN
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36ß, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Asunto(s)
Dermatitis , Interleucina-1 , Psoriasis , Enfermedades de la Piel , Humanos , Antiinflamatorios , Citocinas/metabolismo , Interleucina-1/metabolismo , Isoformas de Proteínas , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/metabolismo , Receptores de Interleucina-1/metabolismoRESUMEN
BACKGROUND: The benzophenanthridine Sanguinarine (Sng) is one of the most abundant root alkaloids with a long history of investigation and pharmaceutical applications. The cytotoxicity of Sng against various tumor cells is well-established; however, its antiproliferative and apoptotic potential against the cutaneous squamous cell carcinoma (cSCC) cells remains unknown. In the present study, we investigated the anti-cancer potential of Sng against cSCC cells and elucidated the underlying mechanisms relevant to the drug action. METHODS: The inhibitory effect of Sng on cSCC cells was evaluated by analyzing cell viability, colony-forming ability and multi-caspase activity. Apoptosis was quantified through Annexin-V/Propidium iodide flow cytometric assay and antagonized by pan-caspase inhibitor z-VAD-FMK. Mitochondrial membrane potential (ΔΨm) dysfunction was analyzed by JC-1 staining, whereas reactive oxygen species (ROS) generation was confirmed by pretreatment with N-acetylcysteine (NAC) and fluorogenic probe-based flow cytometric detection. The expression of cell cycle regulatory proteins, apoptotic proteins and MAPK signaling molecules was determined by Western blotting. Involvement of JNK, p38-MAPK and MEK/ERK in ROS-mediated apoptosis was investigated by pretreatment with SP600125 (JNK inhibitor), SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor), respectively. The stemness-targeting potential of Sng was assessed in tumor cell-derived spheroids. RESULTS: Treatment with Sng decreased cell viability and colony formation in primary (A431) and metastatic (A388) cSCC cells in a time- and dose-dependent manner. Sng significantly inhibited cell proliferation by inducing sub-G0/G1 cell-cycle arrest and apoptosis in cSCC cells. Sng evoked ROS generation, intracellular glutathione (GSH) depletion, ΔΨm depolarization and the activation of JNK pathway as well as that of caspase-3, -8, -9, and PARP. Antioxidant NAC inhibited ROS production, replenished GSH levels, and abolished apoptosis induced by Sng by downregulating JNK. Pretreatment with z-VAD-FMK inhibited Sng-mediated apoptosis. The pharmacological inhibition of JNK by SP600125 mitigated Sng-induced apoptosis in metastatic cSCC cells. Finally, Sng ablated the stemness of metastatic cSCC cell-derived spheroids. CONCLUSION: Our results indicate that Sng exerts a potent cytotoxic effect against cSCC cells that is underscored by a mechanism involving multiple levels of cooperation, including cell-cycle sub-G0/G1 arrest and apoptosis induction through ROS-dependent activation of the JNK signaling pathway. This study provides insight into the potential therapeutic application of Sng targeting cSCC.
Asunto(s)
Antracenos , Carcinoma de Células Escamosas , Isoquinolinas , Neoplasias Cutáneas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Benzofenantridinas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Transducción de Señal , Apoptosis , Sistema de Señalización de MAP Quinasas , Línea Celular TumoralRESUMEN
Francisella tularensis (Ft) poses a significant threat to both animal and human populations, given its potential as a bioweapon. Current research on the classification of this pathogen and its relationship with soil physical-chemical characteristics often relies on traditional statistical methods. In this study, we leverage advanced machine learning models to enhance the prediction of epidemiological models for soil-based microbes. Our model employs a two-stage feature ranking process to identify crucial soil attributes and hyperparameter optimization for accurate pathogen classification using a unique soil attribute dataset. Optimization involves various classification algorithms, including Support Vector Machines (SVM), Ensemble Models (EM), and Neural Networks (NN), utilizing Bayesian and Random search techniques. Results indicate the significance of soil features such as clay, nitrogen, soluble salts, silt, organic matter, and zinc , while identifying the least significant ones as potassium, calcium, copper, sodium, iron, and phosphorus. Bayesian optimization yields the best results, achieving an accuracy of 86.5% for SVM, 81.8% for EM, and 83.8% for NN. Notably, SVM emerges as the top-performing classifier, with an accuracy of 86.5% for both Bayesian and Random Search optimizations. The insights gained from employing machine learning techniques enhance our understanding of the environmental factors influencing Ft's persistence in soil. This, in turn, reduces the risk of false classifications, contributing to better pandemic control and mitigating socio-economic impacts on communities.
Asunto(s)
Francisella tularensis , Humanos , Suelo , Teorema de Bayes , Redes Neurales de la Computación , Aprendizaje Automático , Máquina de Vectores de SoporteRESUMEN
Multiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties. Our study investigated NSP-B's antitumor effects on MM cell lines (U266 and RPMI8226) and the involved molecular mechanisms. NSP-B demonstrated significant growth inhibition and apoptotic induction, triggered by reduced AKT activation and downregulation of the inhibitors of apoptotic proteins and S-phase kinase protein. This was accompanied by an upregulation of p21Kip1 and p27Cip1 and an elevated Bax/BCL2 ratio, culminating in caspase-dependent apoptosis. Interestingly, NSP-B also enhanced the cytotoxicity of bortezomib (BTZ), an existing MM treatment. Overall, our findings demonstrated that NSP-B induces caspase-dependent apoptosis, increases cell damage, and suppresses MM cell proliferation while improving the cytotoxic impact of BTZ. These findings suggest that NSP-B can be used alone or in combination with other medicines to treat MM, highlighting its importance as a promising phytoconstituent in cancer therapy.
Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mieloma Múltiple/metabolismo , Línea Celular Tumoral , Apoptosis , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bortezomib/farmacología , Proliferación CelularRESUMEN
OBJECTIVE: This study was conducted with the aim to establish standard technique of closed reduction (CR) and compare functional outcomes in patients of moderately displaced unilateral extracapsular condylar fractures. MATERIAL AND METHODS: This study is a retrospective randomized controlled trial, conducted at a tertiary care hospital setting from August, 2013 to November, 2018. Patients of unilateral extracapsular condylar fractures with ramus shortening < 7mm and deviation < 35° were divided in two groups by drawing lots and were treated by dynamic elastic therapy and maxillomandibular fixation (MMF). Mean and standard deviation were calculated for quantitative variables, and one way analysis of variance (ANOVA) and Pearson's Chi-square test were used to determine significance of outcomes between two modalities of CR. P value < 0.05 was taken as significant. RESULTS: The numbers of patients treated by dynamic elastic therapy and MMF were 76 (38 in each group). Out of which 48 (63.15%) were male and 28 (36.84%) were female. The ratio of male to female was 1.7:1. The mean ± standard deviation (SD) of age was 32 ± 9.57 years. In patients treated by dynamic elastic therapy, the mean ± SD (at 6-month follow-up) of loss of ramus height (LRH), maximum incisal opening (MIO) and opening deviation were 4.6mm ± 1.08mm, 40.4mm ± 1.57mm and 1.1mm ± 0.87mm respectively. Whereas, LRH, MIO and opening deviation were 4.6mm ± 0.85mm, 40.4mm ± 2.37mm and 0.8mm ± 0.63mm respectively by MMF therapy. One-way ANOVA was statistically insignificant (P value > 0.05) for above mentioned outcomes. Pre-traumatic occlusion was achieved in 89.47% of patients by MMF and in 86.84% patients by dynamic elastic therapy. Pearson's Chi-square test was statistically insignificant (p value < 0.05) for occlusion. CONCLUSION: Parallel results were obtained for both modalities; thus, the technique as dynamic elastic therapy, which promotes early mobilization and functional rehabilitation, can be favored as standard technique of closed reduction for moderately displaced extracapsular condylar fractures. This technique eases patients' stress associated with MMF and prevents ankylosis.
Asunto(s)
Fracturas Mandibulares , Anquilosis del Diente , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Cóndilo Mandibular/diagnóstico por imagen , Cóndilo Mandibular/cirugía , Fracturas Mandibulares/diagnóstico por imagen , Fracturas Mandibulares/cirugía , Resultado del Tratamiento , Estudios Retrospectivos , Fijación Interna de Fracturas/métodos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates. OBJECTIVE: In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH. METHODS: Cell viability was measured using Cell counting Kit-8 (CCK8) assays. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Applied Biosystems' high-resolution Human Transcriptome Array 2.0 was used to examine gene expression. RESULTS: NSP-B induced apoptosis in CTCL cells by activating mitochondrial signaling pathways and caspases. We observed downregulated expression of BUB1B, Aurora Kinases A and B, cyclin-dependent kinases (CDKs) 4 and 6, and polo-like kinase 1 (PLK1) in NSP-B treated cells, which was further corroborated by Western blot analysis. Notably, higher expression levels of these genes showed reduced overall and progression-free survival in the CTCL patient cohort. FOXM1 and BUB1B expression exhibited a dose-dependent reduction in NSP-B-treated CTCL cells.FOXM1 silencing decreased cell viability and increased apoptosis via BUB1B downregulation. Moreover, NSP-B suppressed FOXM1-regulated genes, such as Aurora Kinases A and B, CDKs 4 and 6, and PLK1. The combined treatment of Bortezomib and NSP-B showed greater efficacy in reducing CTCL cell viability and promoting apoptosis compared to either treatment alone. CONCLUSION: Our findings suggest that targeting the FOXM1 pathway may provide a promising therapeutic strategy for CTCL management, with NSP-B offering significant potential as a novel treatment option.
Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Apoptosis , Aurora Quinasa A/metabolismo , Aurora Quinasa A/uso terapéutico , Línea Celular Tumoral , Proteína Forkhead Box M1/efectos de los fármacos , Proteína Forkhead Box M1/metabolismo , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/patología , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Terpenos/farmacología , Terpenos/uso terapéuticoRESUMEN
Cutaneous T cell lymphoma (CTCL) is a varied group of neoplasms that affects the skin. Acquired resistance against chemotherapeutic drugs and associated toxic side effects are limitations that warrant search for novel drugs against CTCL. Embelin (EMB) is a naturally occurring benzoquinone derivative that has gained attention owing to its anticancer pharmacological actions and nontoxic nature. We assessed the anticancer activity of EMB against CTCL cell lines, HuT78, and H9. EMB inhibited viability of CTCL cells in a dose-dependent manner. EMB activated extrinsic and intrinsic pathways of apoptosis as shown by the activation of initiator and executioner caspases. EMB-induced apoptosis also involved suppression of inhibitors of apoptosis, XIAP, cIAP1, and cIAP2. PARP cleavage and upregulation of pH2AX indicated DNA damage induced by EMB. In conclusion, we characterized a novel apoptosis-inducing activity of EMB against CTCL cells, implicating EMB as a potential therapeutic agent against CTCL.
Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Apoptosis , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/metabolismo , Benzoquinonas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Línea Celular , Línea Celular TumoralRESUMEN
The precise mechanism of macrolide antibiotic azithromycin (AZM) mediated CD4+ T cell suppression is not fully understood. Given the crucial role of co-stimulatory signaling in T-lymphocyte function, we tested in vitro effects of AZM on two of the most extensively investigated costimulatory molecules, ICOS and OX40 in context to CD4+ T cell proliferation. Using multi-color flow cytometry approach on TCR-activated healthy donor peripheral blood mononuclear cells, we observed a marked reduction in the frequencies and surface expression of ICOS and OX40 receptors following AZM treatment. Functionally, in contrast to ICOS- and OX40- CD3+ CD4+ T cells, AZM treated ICOS+ and OX40+ displayed profound reduction in cell proliferation. Furthermore, AZM treated T cells displaying reduced levels of ICOS and OX40 found to be associated with suppressed mTOR activity as detected by phosphorylation levels of S6 ribosomal protein. This study provides new insights on potential mechanism of AZM mediated inhibition of T cell proliferation by targeting costimulatory pathways.
RESUMEN
Pathogenic bacteria present a major threat to human health, causing various infections and illnesses, and in some cases, even death. The accurate identification of these bacteria is crucial, but it can be challenging due to the similarities between different species and genera. This is where automated classification using convolutional neural network (CNN) models can help, as it can provide more accurate, authentic, and standardized results.In this study, we aimed to create a larger and balanced dataset by image patching and applied different variations of CNN models, including training from scratch, fine-tuning, and weight adjustment, and data augmentation through random rotation, reflection, and translation. The results showed that the best results were achieved through augmentation and fine-tuning of deep models. We also modified existing architectures, such as InceptionV3 and MobileNetV2, to better capture complex features. The robustness of the proposed ensemble model was evaluated using two data splits (7:2:1 and 6:2:2) to see how performance changed as the training data was increased from 10 to 20%. In both cases, the model exhibited exceptional performance. For the 7:2:1 split, the model achieved an accuracy of 99.91%, F-Score of 98.95%, precision of 98.98%, recall of 98.96%, and MCC of 98.92%. For the 6:2:2 split, the model yielded an accuracy of 99.94%, F-Score of 99.28%, precision of 99.31%, recall of 98.96%, and MCC of 99.26%. This demonstrates that automatic classification using the ensemble model can be a valuable tool for diagnostic staff and microbiologists in accurately identifying pathogenic bacteria, which in turn can help control epidemics and minimize their social and economic impact.
Asunto(s)
Epidemias , Humanos , Redes Neurales de la ComputaciónRESUMEN
Introduction: The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. Methods: Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. Results and discussion: Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants' CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.
Asunto(s)
COVID-19 , Inmunoterapia Adoptiva , Humanos , Vacuna BNT162 , Linfocitos T CD4-Positivos , Proyectos Piloto , Linfocitos T/inmunología , Memoria InmunológicaRESUMEN
Coxiella burnetii (Cb) is a hardy, stealth bacterial pathogen lethal for humans and animals. Its tremendous resistance to the environment, ease of propagation, and incredibly low infectious dosage make it an attractive organism for biowarfare. Current research on the classification of Coxiella and features influencing its presence in the soil is generally confined to statistical techniques. Machine learning other than traditional approaches can help us better predict epidemiological modeling for this soil-based pathogen of public significance. We developed a two-phase feature-ranking technique for the pathogen on a new soil feature dataset. The feature ranking applies methods such as ReliefF (RLF), OneR (ONR), and correlation (CR) for the first phase and a combination of techniques utilizing weighted scores to determine the final soil attribute ranks in the second phase. Different classification methods such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Multi-Layer Perceptron (MLP) have been utilized for the classification of soil attribute dataset for Coxiella positive and negative soils. The feature-ranking methods established that potassium, chromium, cadmium, nitrogen, organic matter, and soluble salts are the most significant attributes. At the same time, manganese, clay, phosphorous, copper, and lead are the least contributing soil features for the prevalence of the bacteria. However, potassium is the most influential feature, and manganese is the least significant soil feature. The attribute ranking using RLF generates the most promising results among the ranking methods by generating an accuracy of 80.85% for MLP, 79.79% for LR, and 79.8% for LDA. Overall, SVM and MLP are the best-performing classifiers, where SVM yields an accuracy of 82.98% and 81.91% for attribute ranking by CR and RLF; and MLP generates an accuracy of 76.60% for ONR. Thus, machine models can help us better understand the environment, assisting in the prevalence of bacteria and decreasing the chances of false classification. Subsequently, this can assist in controlling epidemics and alleviating the devastating effect on the socio-economics of society.
Asunto(s)
Coxiella burnetii , Humanos , Suelo , Manganeso , Aprendizaje Automático , Redes Neurales de la Computación , Máquina de Vectores de SoporteRESUMEN
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Factores de Transcripción/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genéticaRESUMEN
Squamous cell carcinoma is a frequent skin cancer still demanding to understand the underlying mechanisms for better clinical outcomes. Pristimerin, a natural quinonemethide triterpenoid, has shown promising therapeutic outcome due to its anti-cancer activity and multi-targeting potential. We explored the underlying mechanisms of pristimerin-induced programmed cell death of primary (A431) and metastatic (A388) cutaneous squamous cell carcinoma (cSCC) cells. Our results show that pristimerin inhibits growth and proliferation of cSCC through JNK activation. Moreover, pristimerin causes cell cycle arrest and induces cell death via apoptosis and autophagy. Interestingly, use of apoptosis (z-VAD-FMK) and autophagy (3-methyladenine) inhibitors confirmed vital role of programmed cell death in pristimerin-mediated anti-cancer actions. JNK inhibitor, SP600125, also mitigated pristimerin-induced apoptotic and autophagic actions. Moreover, pristimerin-mediated anti-cancer activity acts by generating reactive oxygen species (ROS) thereby inducing JNK signaling. Use of N-acetyl cystine (NAC), a universal ROS scavenger, significantly reversed pristimerin-induced programmed cell death through downregulation of JNK. Pristimerin sensitized skin cancer cells to conventional anticancer drugs cisplatin, azacytidine and doxorubicin through JNK activation, as confirmed by SP600125. Our results indicate that pristimerin mediates programmed cell death and sensitized skin cancer cells to conventional anti-cancer drugs via ROS-mediated JNK activation.