Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Genet ; 15: 1383284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784039

RESUMEN

In this study, we report the mutational profiles, pathogenicity, and their association with different clinicopathologic and sociogenetic factors in patients with Pashtun ethnicity for the first time. A total of 19 FFPE blocks of invasive ductal carcinoma (IDC) from the Breast Cancer (BC) tissue and 6 normal FFPE blocks were analyzed by whole-exome sequencing (WES). Various somatic and germline mutations were identified in cancer-related genes, i.e., ATM, CHEK2, PALB2, and XRCC2. Among a total of 18 mutations, 14 mutations were somatic and 4 were germline. The ATM gene exhibited the maximum number of mutations (11/18), followed by CHEK2 (3/18), PALB2 (3/18), and XRCC2 (1/18). Except one frameshift deletion, all other 17 mutations were nonsynonymous single-nucleotide variants (SNVs). SIFT prediction revealed 7/18 (38.8%) mutations as deleterious. PolyPhen-2 and MutationTaster identified 5/18 (27.7%) mutations as probably damaging and 10/18 (55.5%) mutations as disease-causing, respectively. Mutations like PALB2 p.Q559R (6/19; 31.5%), XRCC2 p.R188H (5/19; 26.31%), and ATM p.D1853N (4/19; 21.05%) were recurrent mutations and proposed to have a biomarker potential. The protein network prediction was performed using GeneMANIA and STRING. ISPRED-SEQ indicated three interaction site mutations which were further used for molecular dynamic simulation. An average increase in the radius of gyration was observed in all three mutated proteins revealing their perturbed folding behavior. Obtained SNVs were further correlated with various parameters related to the clinicopathological status of the tumors. Three mutation positions (ATM p. D1853N, CHEK2 p.M314I, and PALB2 p.T1029S) were found to be highly conserved. Finally, the wild- and mutant-type proteins were screened for two drugs: elagolix (DrugBank ID: DB11979) and LTS0102038 (a triterpenoid, isolated from the anticancer medicinal plant Fagonia indica). Comparatively, a higher number of interactions were noted for normal ATM with both compounds, as compared to mutants.

2.
Neoplasia ; 51: 100989, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537553

RESUMEN

Gene mutations are a source of genetic instability which fuels the progression of cancer. Mutations in BRCA1 and BRCA2 are considered as major drivers in the progression of breast cancer and their detection indispensable for devising therapeutic and management approaches. The current study aims to identify novel pathogenic and recurrent mutations in BRCA1 and BRCA2 in Pakhtun population from the Khyber Pakhtunkhwa. To determine the BRCA1 and BRCA2 pathogenic mutation prevalence in Pakhtun population from KP, whole exome sequencing of 19 patients along with 6 normal FFPE embedded blocks were performed. The pathogenicity of the mutations were determined and they were further correlated with different hormonal, sociogenetic and clinicopathological features. We obtained a total of 10 mutations (5 somatic and 5 germline) in BRCA1 while 27 mutations (24 somatic and 3 germline) for BRCA2. Five and seventeen pathogenic or deleterious mutations were identified in BRCA1 and BRCA2 respectively by examining the mutational spectrum through SIFT, PolyPhen-2 and Mutation Taster. Among the SNVs, BRCA1 p.P824L, BRCA2 p. P153Q, p.I180F, p.D559Y, p.G1529R, p.L1576F, p.E2229K were identified as mutations of the interaction sites as predicted by the deep algorithm based ISPRED-SEQ prediction tool. SAAFEQ-SEQ web-based algorithm was used to calculate the changes in free energy and effect of SNVs on protein stability. All SNVs were found to have a destabilizing effect on the protein. ConSurf database was used to determine the evolutionary conservation scores and nature of the mutated residues. Gromacs 4.5 was used for the molecular simulations. Ramachandran plots were generated using procheck server. STRING and GeneMania was used for prediction of the gene interactions. The highest number of mutations (BRCA1 7/10, 70 %) were on exon 9 and (BRCA2, 11/27; 40 %) were on exon 11. 40 % and 60 % of the BRCA2 mutations were associated Grade 2 and Grade 3 tumors respectively. The present study reveals unique BRCA1 and BRCA2 mutations in Pakhtun population. We further suggest sequencing of the large cohorts for further characterizing the pathogenic mutations.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Neoplasias de la Mama , Femenino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Etnicidad , Genes BRCA2 , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Mutación , Pakistán/epidemiología , Personas del Sur de Asia/genética
3.
ACS Omega ; 9(1): 1620-1626, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222511

RESUMEN

Graphitic carbon nitride nanosheets were synthesized onto cellulose nanofiber surfaces utilizing an eco-friendly salt melt approach. The fabricated material CNF@C3N4 selectively removes Ni(II) and Cu(II) from electroplating wastewater samples. The immobilization of g-C3N4 on solid substrates eases handling of nanomaterial in a flow-through approach and mitigates sorbent loss during column operations. Characterization techniques such as scanning electron microscopy, tunneling electron microscopy, and X-ray photoelectron microscopy were employed to analyze the surface morphology and chemical bonding within the synthesized material. Selective Cu(II) and Ni(II) sorption predominantly arises from the soft-soft interaction between metal ions and associated nitrogen groups. An inner-sphere surface complexation mechanism effectively elucidated the interaction dynamics between the metal and CNF@C3N4. Experimental findings demonstrated satisfactory separation of Ni(II) and Cu(II) ions, with the extraction of 340.0 and 385.0 mg g-1 of material, respectively. Additionally, the devised technique was executed for the preconcentration and quantification of trace metals ions in water samples with a detection limit and limit of quantification of 0.06 and 0.20 µg L-1, respectively.

4.
RSC Adv ; 14(3): 1593-1601, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179094

RESUMEN

In this study, we successfully synthesized polymeric graphitic carbon nitride (g-C3N4) nanosheets through thermal means and proposed their application in solid-phase extraction (SPE) for the enrichment of trace Hg(ii). The nanosheets underwent characterization using scanning electron microscopy, tunnelling electron microscopy, and energy-dispersive X-ray spectroscopy. The column packed with polymeric carbon nitride nanosheets demonstrated effective extraction of trace Hg(ii) ions from complex samples. The g-C3N4 nanosheets possess a zeta potential value of -20 mV, enabling strong interaction with positively charged divalent Hg(ii) ions. This interaction leads to the formation of stable chelates with the nitrogen atoms present in the polytriazine and heptazine units of the material. The proposed method exhibited a high preconcentration limit of 0.33 µg L-1, making it suitable for analysing trace amounts of Hg(ii) ions. Moreover, the method's applicability was confirmed through successful analysis of real samples, achieving an impressive preconcentration factor of 200. The detection limit for trace Hg(ii) ions was determined to be 0.6 µg L-1. To assess the accuracy of the method, we evaluated its performance by recovering spiked amounts of Hg(ii) and by analysing certified reference materials. The results indicated excellent precision, with RSD consistently below 5% for all the analyses conducted. In conclusion, the thermally synthesized polymeric carbon nitride nanosheets present a promising approach for solid-phase extraction and preconcentration of trace Hg(ii) from real samples. The method showcases high efficiency, sensitivity, and accuracy, making it a valuable tool for environmental and analytical applications.

5.
Chemosphere ; 350: 140968, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147924

RESUMEN

The mesoporous multi-shelled hollow structures are promising for trapping of non-degradable heavy metal ions in wastewater but difficult to synthesize. We successfully demonstrated a simple strategy for the construction of mesopore windows on double-shelled α-Fe2O3 hollow spheres. A step-by-step proof of concept synthesis mechanism has been revealed by using mainly electron microscopy and thermogravimetric analysis. We proved that mesopore windows are indispensable to realize the complete surface coverage of phosphonate ligands on α-Fe2O3 double-shelled hollow spheres. The phosphonic groups inherently coordinated with Ni(II) and Cu(II) ions and formed complexes of high stability. Importantly, owing to the structural merits, the phosphorylated double-shelled hollow spheres selectively removes Ni(II) and Cu(II) at wider sample pH range with a high capacity of 380 mg g-1 and 410 mg g-1, respectively. In addition, no significant decrease in the removal efficiency was observed under high salt matrix. For electroplating industry wastewater, the novel structure performs simultaneous Ni(II) and Cu(II) removal, thus producing effluent of stable quality that meets local discharge regulations.


Asunto(s)
Metales Pesados , Aguas Residuales , Galvanoplastia , Metales Pesados/química , Iones
6.
Molecules ; 28(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005229

RESUMEN

The leaves of the Aegle marmelos plant were used for the green synthesis of copper oxide nanoparticles and further characterized by different techniques, including (Ultra Violet-Visible) UV-Vis, Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The UV-Vis showed a peak at 330 nm, which may be due to the Surface Plasmon Resonance phenomenon. XRD analysis showed the crystalline nature of copper oxide nanoparticles (CuO NPs). In contrast, SEM showed that nanoparticles were not aggregated or clumped, EDX showed the presence of elemental copper., and further, the TEM analysis revealed the average particle size of copper oxide nanoparticles to be 32 nm. The Minimum Inhibitory Concentration (MIC) for Escherichia coli (E. coli) and Staphylococcusaureus (S. aureus) was found to be 400 µg/mL, whereas for Candida albicans (C. albicans) and Candida dubliniensis (C. dubliniensis) it was 800 µg/mL. The zone of inhibition in the well diffusion assay showed the antimicrobial activity of copper oxide nanoparticles, and it also showed that as the concentration of copper oxide nanoparticles increased, the zone of inhibition also increased. Further, the electron microscopic view of the interaction between copper oxide nanoparticles and C. albicans cells showed that CuO NPs were internalized and attached to the cell membrane, which caused changes in the cellular structure and caused deformities which eventually led to cell death. The prepared CuO NPs showed significant photocatalytic degradation of organic dyes in the presence of sunlight.


Asunto(s)
Aegle , Nanopartículas del Metal , Antibacterianos/química , Cobre/química , Nanopartículas del Metal/química , Escherichia coli , Staphylococcus aureus , Extractos Vegetales/química , Óxidos , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
7.
ACS Omega ; 8(45): 43318-43331, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024667

RESUMEN

Herein, we report the mutational spectrum of three breast cancer candidate genes (TP53, PIK3CA, and PTEN) using WES for identifying potential biomarkers. The WES data were thoroughly analyzed using SAMtools for variant calling and identification of the mutations. Various bioinformatic tools (SIFT, PolyPhen-2, Mutation Taster, ISPRED-SEQ, SAAFEQ-SEQ, ConSurf, PROCHECK etc.) were used to determine the pathogenicity and nature of the SNVs. Selected interaction site (IS) mutations were visualized in PyMOL after building 3D structures in Swiss-Model. Ramachandran plots were generated by using the PROCHECK server. The selected IS mutations were subjected to molecular dynamic simulation (MDS) studies using Gromacs 4.5. STRING and GeneMANIA were used for the prediction of gene-gene interactions and pathways. Our results revealed that the luminal A molecular subtype of the breast cancer was most common, whereas a high percentage of was Her2 negatives. Moreover, the somatic mutations were more common as compared to the germline mutations in TP53, PIK3CA, and PTEN. 20% of the identified mutations are reported for the first time from Khyber Pakhtunkhwa. In the enrolled cohort, 23 mutations were nonsynonymous SNVs. The frequency of mutations was the highest in PIK3CA, followed by TP53 and PTEN. A total of 13 mutations were found to be highly pathogenic. Four novel mutations were identified on PIK3CA and one each on PTEN and TP53. SAAFEQ-SEQ predicted the destabilizing effect for all mutations. ISPRED-SEQ predicted 9 IS mutations (6 on TP53 and 3 on PIK3CA), whereas no IS mutation was predicted on PTEN. The TP53 IS mutations were TP53R43H, TP53Y73X, TP53K93Q, TP53K93R, TP53D149E, and TP53Q199X; whereas for PIK3CA, the IS mutations were PIK3CAL156V, PIK3CAM610K, and PIK3CAH1047R. Analysis from the ConSurf Web server revealed five SNVs with a highly conserved status (conservation score 9) across TP53 and PTEN. TP53P33R was found predominant in the grade 3 tumors, whereas PTENp.C65S was distributed on ER+, ER-, PR+, PR-, Her2+, and Her2- patients. TP53p.P33R mutation was found to be recurring in the 14/19 (73.6%) patients and, therefore, can be considered as a potential biomarker. Finally, these mutations were studied in the context of their potential association with different hormonal and social factors.

8.
Polymers (Basel) ; 15(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36771833

RESUMEN

Cellulose nanoparticles are sustainable natural polymers with excellent application in environmental remediation technology. In this work, we synthesized cellulose nanoparticles and covalently functionalized them with a multi-functional group possessing ligands. The hybrid material shows excellent adsorption properties for the simultaneous extraction of multiple metal ions in the sample preparation technique. The sorbent shows excellent sorption capacity in the range of 1.8-2.2 mmol/g of material. The developed method was successfully employed for the simultaneous extraction of Pb(II), Cd(II) and Cu(II) from real-world samples (industrial effluent, river water, tap and groundwater) and subsequently determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). The method shows a preconcentration limit of 0.7 ppb attributes to analyze the trace concentration of studied metal ions. The detection limit obtained for Pb(II), Cd(II) and Cu(II) is found to be 0.4 ppb.

9.
RSC Adv ; 12(55): 35712-35721, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36545069

RESUMEN

Zirconium oxide (ZrO2) nanoparticles were introduced onto cellulose nanofibers after being covalently functionalized with mercaptoacetic acid. We experimentally demonstrate that the nanocomposite is capable of selectively capturing Hg(ii) from aqueous samples down to trace level concentrations. Density functional theory (DFT) calculations indicate that energetically favorable R-S → Hg ← O-R bidentate complex formation enhances the rapid adsorption, leading to selective extraction of Hg(ii). Furthermore, the loss of ZrO2 particles during flow-through studies is controlled and restricted after binding to CNF rather than being used directly in the column. The Hg(ii) selectivity is primarily due to the Lewis soft-soft acid-base chelation of Hg(ii) with the mercapto functionalities of the adsorbent. The experimental observations depict a high sorption capacity of 280.5 mg g-1 for Hg(ii). The limit of detection and quantification of the proposed approach were found to be 0.04 µg L-1 and 0.15 µg L-1, respectively. Analytical method accuracy and validity were determined by analyzing Standard Reference Materials and by the standard addition method (recovery > 95% with a 5% RSD). The findings of a Student's t-test were found to be lower than the critical Student's t value. Real water samples were successfully analyzed using the developed procedure.

10.
Molecules ; 27(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557818

RESUMEN

Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.


Asunto(s)
Nanopartículas del Metal , Pseudomonas aeruginosa , Oro/farmacología , Piocianina/farmacología , Biopelículas , Antibacterianos/farmacología
11.
Materials (Basel) ; 15(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36234319

RESUMEN

The green synthesis method of was used for the synthesis of silver nanoparticles using Camellia sinensis (green tea). The Camellia sinensis silver nanoparticles (CS-AgNPs) were characterized using different techniques, including UV-Vis (ultra violet-visible), SEM (scanning electron microscopy), TEM (transmission electron microscopy), and XRD (X-ray diffraction). The average size of the CS-AgNPs was 52 nm, according to TEM. The CS-AgNPs showed excellent antibacterial and antifungal activity. The MIC (minimum inhibitory concentration) against bacterial isolates varied from 31.25 to 62.5 µg/mL, whereas for fungal isolates, the MIC varied from 125 to 250 µg/mL. The presence of a zone in the well diffusion assay showed the antimicrobial nature of CS-AgNPs. Further, CLSM (confocal laser scanning microscopy) showed that CS-AgNPs possess antibiofilm activity. The interaction of CS-AgNPs with the Candidal cells was analyzed using TEM, and it was revealed that CS-AgNPs entered the cell and disrupted the cell machinery.

12.
RSC Adv ; 12(24): 15593-15600, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35685184

RESUMEN

Carbon nanomaterials exhibit exceptional properties and broad horizon applications, where graphene is one of the most popular allotropes of this family due to its astounding performance in every stratum vis-à-vis other classical materials. The large surface area of 2630 m2 g-1, high electrical conductivity, and electron mobility of non-toxic graphene nanomaterials serve as the building blocks for supercapacitor studies. In this article, comparative studies are carried out between electrochemically exfoliated graphene sheets (GSs), solvothermally synthesized graphene quantum dots (GQDs) and acid refluxed carbon nanotubes (CNTs) as an energy storage electrode nanomaterial through cyclic voltammetry (CV). The electrochemical properties of the materials are well correlated with the physicochemical characteristics obtained from Raman, Fourier-transform infrared, and absorption spectroscopy. Thin GSs (0.8-1 nm) and small size (6-10 nm) GQDs fabricated by using laboratory-grade 99% purity graphite rods resulted in promising low-cost materials at mass scale as compared to conducting CNTs. The 0D graphene quantum dots proved to be an excellent energy electrode material in an alkaline electrolyte solution compared to other carbon nanomaterials. The distinct characteristic features of GQDs, like superior electrical properties, large surface area, and abundant active sites make them an ideal candidate for utilization in supercapacitors. The GQDs exhibited an enhanced specific capacitance of 113 F g-1 in 6 mol L-1 KOH through cyclic voltammetry.

13.
ACS Omega ; 7(3): 3044-3051, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35097298

RESUMEN

Metal ion extraction and determination at trace level concentration are challenging due to sample complexity or spectral interferences. Herein, we prepared a through-hole aluminum oxide membrane (AOM) by electrochemical anodization of aluminum substrates. The prepared AOM was characterized by scanning electron microscopy, surface area analysis, porosity measurements, and X-ray photoelectron spectroscopy. The AOM with ordered nanopores was highly porous and possess inherent binding sites for selective arsenite sorption. The AOM was used as a novel sorbent for solid-phase microextraction and preconcentration of arsenite ions in water samples. The AOM's sub-micrometer thickness allows water molecules to flow freely across the pores. Before instrumental determination, the suggested microextraction approach removes spectral interferents and improves the analyte ion concentration, with a detection limit of 0.02 µg L-1. Analyzing a standard reference material was used to validate the procedure. Student's t-test value was less than critical Student's t-value of 4.303 at a 95% confidence level. With coefficients of variation of 3.25%, good precision was achieved.

14.
Nanomaterials (Basel) ; 13(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36616047

RESUMEN

A graphene oxide (GO/CdS) nanocomposite was synthesized by an in situ hydrothermal process and studied to develop a micro solid phase extraction procedure. Microscopic and spectroscopic characterizations have confirmed the successful preparation of the GO/CdS composite. The prepared nanocomposite selectively extracts Hg(II) ions from various water samples (tap, river, and groundwater). The intriguing characteristic of GO sheets is to provide exceptional hydrophilicity and Hg(II) accessibility to surface-decorated CdS nanoparticles. The GO/CdS nanocomposite shows excellent extraction of trace Hg(II) in a short interval of time. Computations based on density functional theory (DFT) suggest that energetically favorable multinuclear S-Hg binding leads to rapid adsorption with high sorption capacity at GO/CdS sites. The analytical features of merit suggested that the developed method has a low detection limit (0.07 µg L-1) and shows good accuracy and precision (with RSD 3.5%; N = 5). The developed method was verified by analyzing SRM 1641d (Standard Reference Material) and real samples after spiking to a predetermined amount.

15.
Indian J Endocrinol Metab ; 26(6): 543-550, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39005520

RESUMEN

Background: Maturity onset diabetes of young (MODY) is considered to be the most underdiagnosed condition. The correct diagnosis of MODY has a definite bearing on the outcome and clinical course of the disease. We aim to determine the prevalence and clinical profile of MODY among young diabetic patients attending at Department of Endocrinology, a tertiary care institute in North India. Methods: It was a cross-sectional study involving all consecutive consenting patients with diabetes and age of onset ≤35 years. A total of 1,094 patients were included in this study, of whom 858 were having age of onset of diabetes <25 years. All patients were screened for MODY using clinical criteria and MODY Probability calculator (available on diabetesgenes.org). Patients with high clinical probability of MODY having negative anti-GAD65 antibody and fasting serum C-peptide levels >0.6 ng/mL were subjected to the Ala98 Val polymorphism (SNP) in hepatocyte nuclear factor (HNF) 1a gene. Results: The prevalence of MODY among the study cohort as per clinical criteria was found to be 7.7%. Males constituted the majority of patients (male vs female, 56% vs. 44%; P < 0.001). The patients with MODY were younger (p < 0.001), leaner (p < 0.001), had younger age at onset of diabetes mellitus (p < 0.001), and lower frequency of features of insulin resistance in the form of skin tags and acanthosis nigricans. Among the 40 patients who were subjected to Ala98Val polymorphism of HNF1α gene (MODY 3), the mutant genotype was seen in 20 (50%) patients. Conclusion: We report a higher prevalence of MODY in our young diabetic patients. A high index of suspicion is required to diagnose MODY as misdiagnosis and inappropriate treatment may have a significant impact on quality-of-life (QOL) with increased cost and unnecessary treatment with insulin.

16.
J Hazard Mater ; 415: 125661, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34088213

RESUMEN

Analyte extraction using graphene oxide (GO) can be challenging owing to the stochastic behavior of the permeation of water molecules and heavy metal ions, imperfect pore structures, and irregular distribution of multi-layer sheets. We prepared a free standing, through-hole graphene oxide membrane deposited on porous anodic aluminum oxide (AAO) substrate. The hydrophilicity of the GO membrane was improved via oxygen plasma treatment. The resulting AAO-GO membrane was used as novel adsorbent for the heavy metal ions preconcentration prior to their determination using inductively coupled plasma optical emission spectroscopy. This sub-micrometer-thick membrane allowed unimpeded permeation of water molecules via two-dimensional capillaries formed across the pores and in between the closely spaced GO sheets. The proposed method shows good detection limit of 1.2 ng L-1, and the co-existing ions did not affect the extraction efficiency of the adsorbent. The accuracy of the method was assessed by analyzing standard reference materials, where the Student's t-test values were less than the critical Student's t-value of 4.303 (95% confidence level). Good precision was achieved, as coefficients of variation ranged between 4% and 5%. The developed SPE adsorbent is a promising alternative for bulk adsorbents owing to the wide variety of available 2D materials and deposition methods.

17.
J Basic Clin Physiol Pharmacol ; 32(6): 1083-1086, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33559463

RESUMEN

OBJECTIVES: Roxithromycin, a macrolide antibiotic, has been shown to ameliorate acetic acid induced colitis in rats by suppressing inflammation and oxidative stress. The aim of this study was to evaluate the effect of roxithromycin on small intestinal transit and cholinergic responsiveness of the colonic smooth muscles of colitic rats. METHODS: Colitis was induced in rats by acetic acid and the small intestinal transit was determined by measuring the distance traversed by charcoal meal from the gastro-duodenal junction in 1 h. The test drug roxithromycin, reference drug mesalazine and anti-inflammatory drug diclofenac were administered orally before inducing colitis and their effect on intestinal transit was compared with colitic control group. The effect on cholinergic responsiveness of colonic smooth muscles was evaluated in vitro by plotting a dose-response curve using different concentrations of acetylcholine. The concentration producing 50% of maximal response (EC50) was calculated for all the treatment groups. RESULTS: The small intestinal transit was enhanced in colitic rats as compared to normal rats (86.00 ± 1.36 vs. 57.00 ± 1.34 cm; p<0.001). Like mesalazine, roxithromycin normalized intestinal transit while diclofenac was ineffective. The results of in vitro experiment show that colitis increased cholinergic responsiveness of the colonic smooth muscles that was not affected by roxithromycin and mesalazine while diclofenac significantly decreased it. CONCLUSIONS: This study shows that like mesalazine, roxithromycin affords protection in colitis mainly by normalizing propulsive movement of the small intestine than by affecting cholinergic responsiveness of the colonic smooth muscles.


Asunto(s)
Colitis , Roxitromicina , Animales , Colitis/tratamiento farmacológico , Colon , Inflamación/tratamiento farmacológico , Músculo Liso , Ratas , Roxitromicina/efectos adversos
18.
RSC Adv ; 11(20): 11889-11899, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423768

RESUMEN

We report a graphene oxide (GO) lamellar membrane with increased inter-layer spacing for efficient permeation of water molecules and heavy metal ions through nanoporous graphene oxide. The inter-layer spacing of the GO sheets in the lamellar structure was increased by introducing poly-aminophosphonic acid (APA) in between the GO sheets. We demonstrate experimentally, the use of a prepared membrane (GO-APA) by a SPE technique for the preconcentration and extraction of heavy metal ions by chelate formation and their determination by ICP-OES. We found that this sub-micrometer-thick membrane allows unimpeded permeation of water molecules through two-dimensional capillaries formed across the pores and by closely spaced graphene sheets. Compared to the bulk GO sorbent, GO-APA membrane offers enhanced sensitivity and permeability for heavy metal ions due to relatively large inter-layer spacing and high surface area (extraction phase) with a high number of active functional groups. The potential of this technique for the preconcentration and extraction of Pb(ii), Cd(ii) and Cu(ii) is illustrated with the contaminated ground water and industrial waste water analysis. The detection limit achieved for studied ions was 1.1 ng L-1, under optimized experimental conditions. The co-existing ions did not hinders the extraction of trace heavy metal ions. Accuracy of the developed method was assessed by analyzing Standard Reference Materials. The Student's t test values were found to less than the critical Student's t value of 4.303 at the 95% confidence level. The method shows good precision as coefficients of variation for five replicate measurements were found to be 4-5%.

19.
RSC Adv ; 12(1): 53-61, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35424482

RESUMEN

Defect rich molybdenum disulfide (MoS2) nanosheets were hydrothermally synthesized and their potential for ultrasound assisted dispersive solid phase microextraction of trace Hg(ii) ions was assessed. Ultrasonic dispersion allows the MoS2 nanosheets to chelate rapidly and evenly with Hg(ii) ions and results in improving the precision and minimizing the extraction time. The multiple defect rich surface was characterized by X-ray diffraction and high-resolution transmission electron microscopy. The surface charge of intrinsically sulfur rich MoS2 nanosheets and their elemental composition was characterized by zeta potential measurements, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The cracks and holes on the basal planes of MoS2 led to diffusion of the Hg(ii) ions into the interior channels. Inner-sphere chelation along with outer-sphere electrostatic interaction were the proposed mechanism for the Hg(ii) adsorption onto the MoS2 surface. The experimental data showed good selectivity of MoS2 nanosheets towards Hg(ii) adsorption. The systematic and constant errors of the proposed method were ruled out by the analysis of the Standard Reference Material (>95% recovery with <5% RSD). The Student's t-test values for the analyzed Standard Reference Material were found to be less than the critical Student's t value at 95% confidence level. The limit of detection (3S) was found to be 0.01 ng mL-1. The MoS2 nanosheets were successfully employed for the analysis of Hg(ii) in environmental water samples.

20.
J Gene Med ; 23(1): e3279, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32989887

RESUMEN

BACKGROUND: Joubert syndrome (JBTS) is a heterogenous disorder characterized by intellectual disability, developmental delays, molar tooth sign in brain imaging, hypotonia, ocular motor apraxia and overlapping features of ciliopathies. There are 36 clinical subtypes of JBTS, with an equal number of genes known so far for this phenotype. METHODS: Whole exome sequencing (WES) and Sanger sequencing were performed for the molecular diagnosis of a Pakhtun family affected with Joubert syndrome type 9 (JBTS9). RESULTS: A novel homozygous missense variant (c.4417C>G; Pro1473Ala) in exon 34 was identified in coiled-coil and C2 domains-containing the protein 2A (CC2D2A; NM_001080522) gene. The variant co-segregated in autosomal recessive fashion within the family and was not found in 200 ethnically matched unaffected individuals. In silico analyses supported the pathogenic effect of the altered CC2D2A protein. CONCLUSIONS: To the best of our knowledge, this is the first report of CC2D2A alteration co-segragating with a JBTS9 phenotype in a Pakhtun family from Pakistan. Our findings broaden the pathogenic spectrum of JBTS9, adding a novel variant to CC2D2A variation pool. WES analysis is a successful molecular diagnostic tool for rare genetic disorders, especially in those populations where the marriage of cousins is more frequent. Efficient and accurate genetic testing and counselling of the affected families are helpful for patient management and for reducing the disease burden in future generations.


Asunto(s)
Enfermedades Cerebelosas/diagnóstico , Enfermedades Cerebelosas/genética , Proteínas del Citoesqueleto/genética , Secuenciación del Exoma , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Mutación Missense , Adulto , Alelos , Biología Computacional/métodos , Consanguinidad , Proteínas del Citoesqueleto/química , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA