Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 14(1): 17817, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090170

RESUMEN

Genetic variants associated with increased liver fat and volume have been reported, but whether physical activity (PA) can attenuate the impact of genetic susceptibility to these traits is poorly understood. We aimed to investigate whether higher PA modify genetic impact on liver-related traits in the UK Biobank cohort. PA was self-reported, while magnetic resonance images were used to estimate liver fat (n = 27,243) and liver volume (n = 24,752). Metabolic dysfunction-associated liver disease (MASLD) and chronic liver disease (CLD) were diagnosed using ICD-9 and ICD-10 codes. Ten liver fat and eleven liver volume-associated genetic variants were selected and unweighted genetic-risk scores for liver fat (GRSLF) and liver volume (GRSLV) were computed. Linear regression analyses were performed to explore interactions between GRSLF/ GRSLV and PA in relation to liver-related traits. Association between GRSLF and liver fat was not different among lower (ß = 0.063, 95% CI 0.041-0.084) versus higher PA individuals (ß = 0.065, 95% CI 0.054-0.077, pinteraction = 0.62). The association between the GRSLV and liver volume was not different across different PA groups (pinteraction = 0.71). Similarly, PA did not modify the effect of GRSLF and GRSLV on MASLD or CLD. Our findings show that physical activity and genetic susceptibility to liver-related phenotypes seem to act independently, benefiting all individuals regardless of genetic risk.


Asunto(s)
Ejercicio Físico , Predisposición Genética a la Enfermedad , Hepatopatías , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hepatopatías/genética , Hepatopatías/etiología , Hepatopatías/metabolismo , Anciano , Hígado/metabolismo , Hígado/patología , Adulto , Factores de Riesgo , Imagen por Resonancia Magnética , Polimorfismo de Nucleótido Simple
2.
J Cardiothorac Surg ; 19(1): 193, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594763

RESUMEN

In this case report, we present the unique and intriguing case of a 57-year-old man who experienced exertional palpitations and shortness of breath for 5 years. He was diagnosed with idiopathic heart failure three years ago, leading to diuretic treatment. Physical examination revealed notable left lower extremity swelling, severe varicose veins, and cardiac murmurs. Echocardiography showed significant cardiac enlargement and severe functional mitral and tricuspid valve regurgitation. Computed tomography (CT) imaging uncovered a 10 mm left common iliac arteriovenous fistula, causing abnormal early filling of the inferior vena cava (IVC) and marked IVC dilation. Open surgical repair of the arteriovenous fistula resulted in symptom relief and improved cardiac function. This case underscores the importance of considering unusual causes in heart failure patients and highlights the value of early diagnosis and intervention in complex cardiac-vascular interactions.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Insuficiencia Cardíaca , Insuficiencia de la Válvula Tricúspide , Humanos , Masculino , Persona de Mediana Edad , Fístula Arteriovenosa/diagnóstico por imagen , Fístula Arteriovenosa/etiología , Ecocardiografía , Insuficiencia Cardíaca/cirugía , Insuficiencia Cardíaca/complicaciones , Insuficiencia de la Válvula Tricúspide/cirugía , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/cirugía
3.
Biomed Eng Online ; 23(1): 42, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38614974

RESUMEN

BACKGROUND: Computed tomography (CT) is an imaging modality commonly used for studies of internal body structures and very useful for detailed studies of body composition. The aim of this study was to develop and evaluate a fully automatic image registration framework for inter-subject CT slice registration. The aim was also to use the results, in a set of proof-of-concept studies, for voxel-wise statistical body composition analysis (Imiomics) of correlations between imaging and non-imaging data. METHODS: The current study utilized three single-slice CT images of the liver, abdomen, and thigh from two large cohort studies, SCAPIS and IGT. The image registration method developed and evaluated used both CT images together with image-derived tissue and organ segmentation masks. To evaluate the performance of the registration method, a set of baseline 3-single-slice CT images (from 2780 subjects including 8285 slices) from the SCAPIS and IGT cohorts were registered. Vector magnitude and intensity magnitude error indicating inverse consistency were used for evaluation. Image registration results were further used for voxel-wise analysis of associations between the CT images (as represented by tissue volume from Hounsfield unit and Jacobian determinant) and various explicit measurements of various tissues, fat depots, and organs collected in both cohort studies. RESULTS: Our findings demonstrated that the key organs and anatomical structures were registered appropriately. The evaluation parameters of inverse consistency, such as vector magnitude and intensity magnitude error, were on average less than 3 mm and 50 Hounsfield units. The registration followed by Imiomics analysis enabled the examination of associations between various explicit measurements (liver, spleen, abdominal muscle, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), thigh SAT, intermuscular adipose tissue (IMAT), and thigh muscle) and the voxel-wise image information. CONCLUSION: The developed and evaluated framework allows accurate image registrations of the collected three single-slice CT images and enables detailed voxel-wise studies of associations between body composition and associated diseases and risk factors.


Asunto(s)
Composición Corporal , Tomografía Computarizada por Rayos X , Humanos , Tejido Adiposo , Hígado , Proyectos de Investigación
4.
Heliyon ; 10(4): e26414, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390107

RESUMEN

Early cancer detection, guided by whole-body imaging, is important for the overall survival and well-being of the patients. While various computer-assisted systems have been developed to expedite and enhance cancer diagnostics and longitudinal monitoring, the detection and segmentation of tumors, especially from whole-body scans, remain challenging. To address this, we propose a novel end-to-end automated framework that first generates a tumor probability distribution map (TPDM), incorporating prior information about the tumor characteristics (e.g. size, shape, location). Subsequently, the TPDM is integrated with a state-of-the-art 3D segmentation network along with the original PET/CT or PET/MR images. This aims to produce more meaningful tumor segmentation masks compared to using the baseline 3D segmentation network alone. The proposed method was evaluated on three independent cohorts (autoPET, CAR-T, cHL) of images containing different cancer forms, obtained with different imaging modalities, and acquisition parameters and lesions annotated by different experts. The evaluation demonstrated the superiority of our proposed method over the baseline model by significant margins in terms of Dice coefficient, and lesion-wise sensitivity and precision. Many of the extremely small tumor lesions (i.e. the most difficult to segment) were missed by the baseline model but detected by the proposed model without additional false positives, resulting in clinically more relevant assessments. On average, an improvement of 0.0251 (autoPET), 0.144 (CAR-T), and 0.0528 (cHL) in overall Dice was observed. In conclusion, the proposed TPDM-based approach can be integrated with any state-of-the-art 3D UNET with potentially more accurate and robust segmentation results.

5.
BMC Bioinformatics ; 24(1): 346, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723444

RESUMEN

BACKGROUND: Body composition (BC) is an important factor in determining the risk of type 2-diabetes and cardiovascular disease. Computed tomography (CT) is a useful imaging technique for studying BC, however manual segmentation of CT images is time-consuming and subjective. The purpose of this study is to develop and evaluate fully automated segmentation techniques applicable to a 3-slice CT imaging protocol, consisting of single slices at the level of the liver, abdomen, and thigh, allowing detailed analysis of numerous tissues and organs. METHODS: The study used more than 4000 CT subjects acquired from the large-scale SCAPIS and IGT cohort to train and evaluate four convolutional neural network based architectures: ResUNET, UNET++, Ghost-UNET, and the proposed Ghost-UNET++. The segmentation techniques were developed and evaluated for automated segmentation of the liver, spleen, skeletal muscle, bone marrow, cortical bone, and various adipose tissue depots, including visceral (VAT), intraperitoneal (IPAT), retroperitoneal (RPAT), subcutaneous (SAT), deep (DSAT), and superficial SAT (SSAT), as well as intermuscular adipose tissue (IMAT). The models were trained and validated for each target using tenfold cross-validation and test sets. RESULTS: The Dice scores on cross validation in SCAPIS were: ResUNET 0.964 (0.909-0.996), UNET++ 0.981 (0.927-0.996), Ghost-UNET 0.961 (0.904-0.991), and Ghost-UNET++ 0.968 (0.910-0.994). All four models showed relatively strong results, however UNET++ had the best performance overall. Ghost-UNET++ performed competitively compared to UNET++ and showed a more computationally efficient approach. CONCLUSION: Fully automated segmentation techniques can be successfully applied to a 3-slice CT imaging protocol to analyze multiple tissues and organs related to BC. The overall best performance was achieved by UNET++, against which Ghost-UNET++ showed competitive results based on a more computationally efficient approach. The use of fully automated segmentation methods can reduce analysis time and provide objective results in large-scale studies of BC.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Composición Corporal , Hígado , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA