Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto principal
Asunto de la revista
Intervalo de año de publicación
1.
Plant Commun ; 4(3): 100507, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36540022

RESUMEN

Double haploid production is the most effective way to create true-breeding lines in a single generation. In Arabidopsis, haploid induction via mutation of the centromere-specific histone H3 (cenH3) has been shown when the mutant is outcrossed to the wild-type, and the wild-type genome remains in the haploid progeny. However, factors that affect haploid induction are still poorly understood. Here, we report that a mutant of the cenH3 assembly factor Kinetochore Null2 (KNL2) can be used as a haploid inducer when pollinated by the wild-type. We discovered that short-term temperature stress of the knl2 mutant increased the efficiency of haploid induction 10-fold. We also demonstrated that a point mutation in the CENPC-k motif of KNL2 is sufficient to generate haploid-inducing lines, suggesting that haploid-inducing lines in crops can be identified in a naturally occurring or chemically induced mutant population, avoiding the generic modification (GM) approach at any stage. Furthermore, a cenh3-4 mutant functioned as a haploid inducer in response to short-term heat stress, even though it did not induce haploids under standard conditions. Thus, we identified KNL2 as a new target gene for the generation of haploid-inducer lines and showed that exposure of centromeric protein mutants to high temperature strongly increases their haploid induction efficiency.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Haploidia , Temperatura , Centrómero/genética , Cinetocoros
2.
Mol Biol Evol ; 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671323

RESUMEN

KINETOCHORE NULL2 (KNL2) plays key role in the recognition of centromeres and new CENH3 deposition. To gain insight into the origin and diversification of the KNL2 gene, we reconstructed its evolutionary history in the plant kingdom. Our results indicate that the KNL2 gene in plants underwent three independent ancient duplications in ferns, grasses and eudicots. Additionally, we demonstrated that previously unclassified KNL2 genes could be divided into two clades αKNL2 and ßKNL2 in eudicots and γKNL2 and δKNL2 in grasses, respectively. KNL2s of all clades encode the conserved SANTA domain, but only the αKNL2 and γKNL2 groups additionally encode the CENPC-k motif. In the more numerous eudicot sequences, signatures of positive selection were found in both αKNL2 and ßKNL2 clades, suggesting recent or ongoing adaptation. The confirmed centromeric localization of ßKNL2 and mutant analysis suggests that it participates in loading of new CENH3, similarly to αKNL2. A high rate of seed abortion was found in heterozygous ßKNL2 plants and the germinated homozygous mutants did not develop beyond the seedling stage. Taken together, our study provides a new understanding of the evolutionary diversification of the plant kinetochore assembly gene KNL2, and suggests that the plant-specific duplicated KNL2 genes are involved in centromere and/or kinetochore assembly for preserving genome stability.

3.
Methods Mol Biol ; 2382: 19-28, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34705231

RESUMEN

The cell cycle is a complex sequence of events by which cells grow and divide mitotically or meiotically. Mitosis results in the generation of two identical daughter cells, while meiosis generates gametes as a prerequisite for sexual reproduction. To study the localization and dynamics of proteins involved in the regulation and proceeding of the cell cycle, life cell imaging of proteins fused to fluorescent tags can be performed. However, in some cases this approach cannot be applied, e.g., due to low fluorescence intensity, fast bleaching, or degradation of recombinant proteins by the proteasome pathway. Instead, immunolabeling with protein-specific antibodies offers a useful approach for the analysis of intact cells. Alternatively, immunolabeling can also be applied to isolated and/or flow-sorted nuclei of particular cell cycle stages (G1, S, and G2) or of different endopolyploidy levels. The following chapter will detail indirect immunolabeling protocols to analyze the subcellular localization and distribution of cell cycle-specific proteins in Arabidopsis thaliana.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular , Cromosomas de las Plantas , Meiosis , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA