Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36556732

RESUMEN

Residual oxygen in wurtzite-type aluminum nitride (AlN) crystal, which significantly affects phonon transport and crystal growth, is crucial to thermal conductivity and the crystal quality of AlN ceramics. In this study, the effect of residual oxygen on the lattice of AlN was examined for as-synthesized and sintered samples. By controlling reaction time in the carbothermal reduction nitridation (CRN) procedure, AlN powder was successfully synthesized, and the amount of residual oxygen was systematically controlled. The evolution of lattice parameters of AlN with respect to oxygen conc. was carefully investigated via X-ray diffraction analysis. With increasing amounts of residual oxygen in the as-synthesized AlN, lattice expansion in the ab plane was induced without a significant change in the c-axis lattice parameter. The lattice expansion in the ab plane owing to the residual oxygen was also confirmed with high-resolution transmission electron microscopy, in contrast to the invariant lattice parameter of the sintered AlN phase. Micro-strain values from XRD peak broadening confirm that stress, induced by residual oxygen, expands the AlN lattice. In this work, the lattice expansion of AlN with increasing residual oxygen was elucidated via X-ray diffraction and HR-TEM, which is useful to estimate and control the lattice oxygen in AlN ceramics.

2.
Materials (Basel) ; 15(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36431611

RESUMEN

Aluminum nitride, with its high thermal conductivity and insulating properties, is a promising candidate as a thermal dissipation material in optoelectronics and high-power logic devices. In this work, we have shown that the thermal conductivity and electrical resistivity of AlN ceramics are primarily governed by ionic defects created by oxygen dissolved in AlN grains, which are directly probed using 27Al NMR spectroscopy. We find that a 4-coordinated AlN3O defect (ON) in the AlN lattice is changed to intermediate AlNO3, and further to 6-coordinated AlO6 with decreasing oxygen concentration. As the aluminum vacancy (VAl) defect, which is detrimental to thermal conductivity, is removed, the overall thermal conductivity is improved from 120 to 160 W/mK because of the relatively minor effect of the AlO6 defect on thermal conductivity. With the same total oxygen content, as the AlN3O defect concentration decreases, thermal conductivity increases. The electrical resistivity of our AlN ceramics also increases with the removal of oxygen because the major ionic carrier is VAl. Our results show that to enhance the thermal conductivity and electrical resistivity of AlN ceramics, the dissolved oxygen in AlN grains should be removed first. This understanding of the local structure of Al-related defects enables us to design new thermal dissipation materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA