Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(20): 202301, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829073

RESUMEN

Angular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Pb+Pb and pp collisions at the LHC. The muons are measured with transverse momenta and pseudorapidities satisfying p_{T}^{µ}>4 GeV and |η^{µ}|<2.4, respectively. The distributions of azimuthal angle separation Δϕ for muon pairs having pseudorapidity separation |Δη|>0.8, are measured in different Pb+Pb centrality intervals and compared to the same distribution measured in pp collisions at the same center-of-mass energy. Results are presented separately for muon pairs with opposite-sign charges, same-sign charges, and all pairs. A clear peak is observed in all Δϕ distributions at Δϕ∼π, consistent with the parent heavy-quark pairs being produced via hard-scattering processes. The widths of that peak, characterized using Cauchy-Lorentz fits to the Δϕ distributions, are found to not vary significantly as a function of Pb+Pb collision centrality and are similar for pp and Pb+Pb collisions. This observation will provide important constraints on theoretical descriptions of heavy-quark interactions with the quark-gluon plasma.

2.
Phys Rev Lett ; 132(13): 131802, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613283

RESUMEN

This Letter presents the first study of Higgs boson production in association with a vector boson (V=W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at sqrt[s]=13 TeV and corresponding to an integrated luminosity of 137 fb^{-1}. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into bb[over ¯]. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be µ=1.4_{-0.9}^{+1.0} and the corresponding cross section is 3.1±1.3(stat)_{-1.4}^{+1.8}(syst) pb.

3.
Phys Rev Lett ; 132(10): 102301, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518341

RESUMEN

ATLAS measured the centrality dependence of the dijet yield using 165 nb^{-1} of p+Pb data collected at sqrt[s_{NN}]=8.16 TeV in 2016. The event centrality, which reflects the p+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, R_{CP}, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The R_{CP} shows a scaling with the Bjorken x of the parton originating from the proton, x_{p}, while no such trend is observed as a function of x_{Pb}. This analysis provides unique input to understanding the role of small proton spatial configurations in p+Pb collisions by covering parton momentum fractions from the valence region down to x_{p}∼10^{-3} and x_{Pb}∼4×10^{-4}.

4.
Phys Rev Lett ; 132(8): 081801, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38457710

RESUMEN

Searches for new resonances are performed using an unsupervised anomaly-detection technique. Events with at least one electron or muon are selected from 140 fb^{-1} of pp collisions at sqrt[s]=13 TeV recorded by ATLAS at the Large Hadron Collider. The approach involves training an autoencoder on data, and subsequently defining anomalous regions based on the reconstruction loss of the decoder. Studies focus on nine invariant mass spectra that contain pairs of objects consisting of one light jet or b jet and either one lepton (e,µ), photon, or second light jet or b jet in the anomalous regions. No significant deviations from the background hypotheses are observed. Limits on contributions from generic Gaussian signals with various widths of the resonance mass are obtained for nine invariant masses in the anomalous regions.

5.
Phys Rev Lett ; 131(25): 251802, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181336

RESUMEN

A measurement of the mass of the Higgs boson combining the H→ZZ^{*}→4ℓ and H→γγ decay channels is presented. The result is based on 140 fb^{-1} of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11±0.09(stat)±0.06(syst)=125.11±0.11 GeV. This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA